
THETANULLS OF CYCLIC CURVES OF SMALL GENUS

E. PREVIATO, T. SHASKA, AND G. S. WIJESIRI

Abstract. We study relations among the classical thetanulls of cyclic curves,

namely curves X (of genus g(X ) > 1 ) with an automorphism σ such that σ

generates a normal subgroup of the groupG of automorphisms, and g (X/〈σ〉) =
0. Relations between thetanulls and branch points of the projection are the

object of much classical work, especially for hyperelliptic curves, and of recent

work, in the cyclic case. We determine the curves of genus 2 and 3 in the locus
Mg(G,C) for all G that have a normal subgroup 〈σ〉 as above, and all possible

signatures C, via relations among their thetanulls.

1. Introduction

In this paper we consider cyclic algebraic curves, over the complex numbers.
These are by definition compact Riemann surfaces X of genus g > 1 (unless we
allow singular points, as noted below, so as not attach unnecessary qualifications to
a definition or statement), admitting an automorphism σ such that X/σ ∼= P1 and
σ generates a normal subgroup of the automorphism group Aut(X ) of X . When
the curve is hyperelliptic, we insist that the curve have “extra automorphisms”,
in particular σ is not the hyperelliptic involution. Note that the condition implies
to having an equation yn = f(x) for the curve, where x is an affine coordinate
on P1, σ has order n, and 1, y, σy, ..., σn−1y is a basis of C(X )/C(x). Naturally,
the branch points of π : X → P1, together with the signature C of the cover
(its monodromy up to conjugation) provide algebraic coordinates for the curve in
moduli, though the same curve could be represented in different ways. The problem
of expressing these algebraic data in terms of the transcendental (period matrix,
thetanulls, e.g.) is classical. We use below formulas for genus-2 curves due to
Rosenhein and Picard, Thomae’s formulas for hyperelliptic curves, and a recent
generalization of the latter for cyclic curves with 〈s〉 ∼= C3, where we denote by Cn
the cyclic group of order n, due to Nakayashiki [8]; several other authors recently
obtained partial generalizations to cyclic curves also. We do not aim here at a
complete account of the classical or contemporary work on these problems.

Cyclic curves are rare in the moduli space Mg of smooth curves, and it is de-
sirable to characterize their locus, by algebraic conditions on the equation of the
curve, or by analytic conditions on its Abelian coordinates, in other words, theta
functions, and better yet, by both. We achieve this for genera 2 and 3, making
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recourse to classical formulas, some recent results of Hurwitz space theory, and
symbolic manipulation.

The contents of the paper are as follows. In section 2 we recall the notation
for Riemann’s theta function, as well as classical facts on theta characteristics; we
recall Frobenius’ and Thomae’s formulas for hyperelliptic curves. In sections 3 and
4, respectively, we specialize to the case of genera 2 and 3, we recall recent results
on Mg(G,C), and we calculate thetanull constraints that define the loci of the
cyclic curves, using the results we cited. The cleanest case is the one of genus 2 and
〈σ〉 ∼= C2, which was classified by Jacobi who gave a condition in terms the branch
points of the hyperelliptic involution; such a condition was extended, in principle,
to any curve in Mg(Cn,C), cf. [3] or [9], but the algebraic equation satisfied by
the branch points would rapidly become intractable with the size of n.

2. Preliminaries

In this section we give a brief description of the basic setup. All of this material
can be found in any standard book on theta functions.

Let X be a genus g ≥ 2 algebraic curve. We choose a symplectic homology basis
for X , say {A1, . . . , Ag, B1, . . . , Bg}, such that the intersection products Ai · Aj =
Bi · Bj = 0 and Ai · Bj = δij , where δij is the Kronecker delta. We choose a basis
{wi} for the space of holomorphic 1-forms such that

∫
Ai
wj = δij . The matrix

Ω =
[∫
Bi
wj

]
is the period matrix of X . The columns of the matrix [I |Ω] form a

lattice L in Cg and the Jacobian of X is Jac (X ) = Cg/L. Let Hg be the Siegel
upper-half space. Then Ω ∈ Hg and there is an injection

Mg ↪→ Hg/Sp2g(Z) =: Ag
where Sp2g(Z) is the symplectic group. For any z ∈ Cg and τ ∈ Hg Riemann’s theta
function is defined as

θ(z, τ) =
∑
u∈Zg

eπi(u
tτu+2utz)

where u and z are g−dimensional column vectors and the products involved in the
formula are matrix products. The fact that the imaginary part of τ is positive makes
the series absolutely convergent over any compact sets. Therefore, the function is
analytic. The theta function is holomorphic on Cg ×Hg and satisfies

θ(z + u, τ) = θ(z, τ), θ(z + uτ, τ) = e−πi(u
tτu+2ztu) · θ(z, τ),

where u ∈ Zg; see [6] for details. Any point e ∈ Jac (X ) can be written uniquely

as e = (b, a)

(
1g
Ω

)
, where a, b ∈ Rg. We shall use the notation [e] =

[
a
b

]
for the

characteristic of e. For any a, b ∈ Qg, the theta function with rational characteristics
is defined as

θ

[
a
b

]
(z, τ) =

∑
u∈Zg

eπi((u+a)
tτ(u+a)+2(u+a)t(z+b)).

When the entries of column vectors a and b are from the set {0, 12}, then the

characteristics

[
a
b

]
are called the half-integer characteristics. The corresponding

theta functions with rational characteristics are called theta characteristics. A
scalar obtained by evaluating a theta characteristic at z = 0 is called a theta
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constant. Points of order n on Jac X are called the 1
n -periods. Any half-integer

characteristic is given by

m =
1

2
m =

1

2

(
m1 m2 · · · mg

m′1 m′2 · · · m′g

)
where mi,m

′
i ∈ Z. For γ =

[
γ′

γ′′

]
∈ 1

2Z
2g/Z2g we define e∗(γ) = (−1)4(γ

′)tγ′′
. Then,

θ[γ](−z, τ) = e∗(γ)θ[γ](z, τ).

We say that γ is an even (resp. odd) characteristic if e∗(γ) = 1 (resp. e∗(γ) = −1).
For any curve of genus g, there are 2g−1(2g + 1) (respectively 2g−1(2g − 1) ) even
theta functions (respectively odd theta functions). Let a be another half integer
characteristic. We define ma as follows.

ma =
1

2

(
t1 t2 · · · tg
t′1 t′2 · · · t′g

)
where ti ≡ (mi + ai) mod 2 and t′i ≡ (m′i + a′i) mod 2.

For the rest of this section we consider only characteristics 1
2q in which each of

the elements qi, q
′
i is either 0 or 1. We use the following abbreviations

|m| =
g∑
i=1

mim
′
i, |m, a| =

g∑
i=1

(m′iai −mia
′
i),

|m, a, b| = |a, b|+ |b,m|+ |m, a|,
(
m

a

)
= eπi

∑g
j=1mja

′
j .

The set of all half integer characteristics forms a group Γ which has 22g elements.
We say that two half integer characteristics m and a are syzygetic (resp., azygetic)
if |m, a| ≡ 0 mod 2 (resp., |m, a| ≡ 1 mod 2) and three half integer characteristics
m, a, and b are syzygetic if |m, a, b| ≡ 0 mod 2.

A Göpel group G is a group of 2r half integer characteristics where r ≤ g such
that every two characteristics are syzygetic. The elements of the group G are formed
by the sums of r fundamental characteristics; see [4, pg. 489] for details. Obviously,
a Göpel group of order 2r is isomorphic to Cr2 . The proof of the following lemma
can be found on [4, pg. 490].

Lemma 1. The number of different Göpel groups which have 2r characteristics is

(22g − 1)(22g−2 − 1) · · · (22g−2r+2 − 1)

(2r − 1)(2r−1 − 1) · · · (2− 1)

If G is a Göpel group with 2r elements, then it has 22g−r cosets. The cosets
are called Göpel systems and denoted by aG, a ∈ Γ. Any three characteristics of a
Göpel system are syzygetic. We can find a set of characteristics called a basis of the
Göpel system which derives all its 2r characteristics by taking only the combinations
of any odd number of characteristics of the basis.

Lemma 2. Let g ≥ 1 be a fixed integer, r be as defined above and σ = g − r.
Then there are 2σ−1(2σ + 1) Göpel systems which consist of even characteristics
only and there are 2σ−1(2σ− 1) Göpel systems which consist of odd characteristics.
The other 22σ(2r − 1) Göpel systems consist as many odd characteristics as even
characteristics.

Proof. The proof can be found on [4, pg. 492]. �
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Corollary 3. When r = g we have only one (resp., 0) Göpel system which consists
of even (resp., odd) characteristics.

Proposition 4. The following statements are true.

(1) θ2[a]θ2[ah] =
1

2g−1

∑
e

eπi|ae|
(
h

ae

)
θ2[e]θ2[eh]

(2) θ4[a] + eπi|a,h|θ4[ah] =
1

2g−1

∑
e

eπi|ae|{θ4[e] + eπi|a,h|θ4[eh]}

where θ[e] is the theta constant corresponding to the characteristic e, a and h are
any half integer characteristics and e is an even characteristic such that |e| ≡ |eh|
mod 2. There are 2 · 2g−2 (2g−1 + 1) such candidates for e.

Proof. For the proof, see [4, pg. 524]. �

The statements given in the proposition above can be used to get identities
among theta constants; see section 3.

2.1. Cyclic curves with extra automorphisms. A normal cyclic curve is an
algebraic curve X such that there exist a normal cyclic subgroup Cm / Aut(X ) such
that g(X/Cm) = 0. Then Ḡ = G/Cm embeds as a finite subgroup of PGL(2,C). An
affine equation of a birational model of a cyclic curve can be given by the following

(3) ym = f(x) =

s∏
i=1

(x− αi)di , 0 < di < m.

Hyperelliptic curves are cyclic curves with m = 2. Note that when 0 < di for
some i the curve is singular. A hyperelliptic curve X is a cover of order two of the
projective line P1. Let z be the generator (the hyperelliptic involution) of the Galois
group Gal(X/P1). It is known that 〈z〉 is a normal subgroup of the automorphism
group Aut(X ). Let X −→ P1 be the degree 2 hyperelliptic projection. We can
assume that infinity is a branch point. Let

B := {α1, α2, · · · , α2g+1}

be the set of other branch points. Let S = {1, 2, · · · , 2g + 1} be the index set of B
and η : S −→ 1

2Z
2g/Z2g be a map defined as follows;

η(2i− 1) =

[
0 · · · 0 1

2 0 · · · 0
1
2 · · · 1

2 0 0 · · · 0

]
η(2i) =

[
0 · · · 0 1

2 0 · · · 0
1
2 · · · 1

2
1
2 0 · · · 0

]
where the nonzero element of the first row appears in ith column. We define η(∞)

to be

[
0 · · · 0 0
0 · · · 0 0

]
. For any T ⊂ B, we can define the half-integer characteristic

as

ηT =
∑
ak∈T

η(k).

Let T c denote the complement of T in B. Note that ηB ∈ Z2g. If we view ηT as
an element of 1

2Z
2g/Z2g then ηT = ηT c . Let M denote the symmetric difference of
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sets, that is T M R = (T ∪R)− (T ∩R). It can be shown that the set of subsets of
B is a group under M. We have the following group isomorphism

{T ⊂ B |#T ≡ g + 1 mod 2}/T ∼=
1

2
Z2g/Z2g.

For hyperelliptic curves, it is known that 2g−1(2g + 1)−
(
2g+1
g

)
of the even theta

constants are zero. The following theorem provides a condition on the characteris-
tics in which theta characteristics become zero. The proof of the theorem can be
found in [7, pg. 102].

Theorem 5. Let X be a hyperelliptic curve, with a set B of branch points. Let
S be the index set as above and U be the set of all odd values of S. Then for all
T ⊂ S with even cardinality, we have θ[ηT ] = 0 if and only if #(T4U) 6= g + 1,
where θ[ηT ] is the theta constant corresponding to the characteristics ηT .

Notice also that by parity, all odd theta constants are zero. There is a formula
(so called Frobenius’ theta formula) which half-integer theta characteristics for
hyperelliptic curves satisfy.

Lemma 6 (Frobenius). For all zi ∈ Cg, 1 ≤ i ≤ 4 such that z1 + z2 + z3 + z4 = 0
and for all bi ∈ Q2g, 1 ≤ i ≤ 4 such that b1 + b2 + b3 + b4 = 0, we have∑

j∈S∪{∞}

εU (j)

4∏
i=1

θ[bi + η(j)](zi) = 0,

where for any A ⊂ B,

εA(k) =

{
1 if k ∈ A
−1 otherwise

Proof. See [6, pg. 107].
�

A relationship between theta constants and the branch points of the hyperelliptic
curve is given by Thomae’s formula.

Lemma 7 (Thomae). For a non singular even half integer characteristics e cor-
responding to the partition of the branch points {1, 2, · · · , 2(g + 1)} = {i1 < i2 <
· · · < ig+1} ∪ {j1 < j2 < · · · < jg+1}, we have

θ[e](0; τ)8 = A
∏
k<l

(λik − λil)2(λjk − λjl)2.

See [6, pg. 128] for the description of A and [6, pg. 120] for the proof. Using
Thomae’s formula and Frobenius’ theta identities we express the branch points of
the hyperelliptic curves in terms of even theta constants.

3. Genus 2 curves

The automorphism group G of a genus 2 curve X in characteristic 6= 2 is isomor-
phic to Z2, Z10, V4, D8, D12, SL2(3), GL2(3), or 2+S5. The case when G∼= 2+S5

occurs only in characteristic 5. If G∼=SL2(3) (resp., GL2(3)) then X has equation
Y 2 = X6−1 (resp., Y 2 = X(X4−1)). If G∼=Z10 then X has equation Y 2 = X6−X.
For a fixed G from the list above, the locus of genus 2 curves with automorphism
group G is an irreducible algebraic subvariety of M2. Such loci can be described
in terms of the Igusa invariants.
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For any genus 2 curve we have six odd theta characteristics and ten even theta
characteristics. The following are the sixteen theta characteristics, where the first

ten are even and the last six are odd. For simplicity, we denote them by θi =

[
a
b

]
instead of θi

[
a
b

]
(z, τ) where i = 1, . . . , 10 for the even theta functions.

θ1 =

[
0 0
0 0

]
, θ2 =

[
0 0
1
2

1
2

]
, θ3 =

[
0 0
1
2

0

]
, θ4 =

[
0 0
0 1

2

]
, θ5 =

[
1
2

0
0 0

]
,

θ6 =

[
1
2

0
0 1

2

]
, θ7 =

[
0 1

2

0 0

]
, θ8 =

[
1
2

1
2

0 0

]
, θ9 =

[
0 1

2
1
2

0

]
, θ10 =

[
1
2

1
2

1
2

1
2

]
,

and the odd theta functions correspond to the following characteristics[
0 1

2
0 1

2

]
,

[
0 1

2
1
2

1
2

]
,

[
1
2 0
1
2 0

]
,

[
1
2

1
2

1
2 0

]
,

[
1
2 0
1
2

1
2

]
,

[
1
2

1
2

0 1
2

]
Consider the following Göpel group

G =

{
0 =

[
0 0
0 0

]
,m1 =

[
0 0
0 1

2

]
,m2 =

[
0 0
1
2 0

]
,m1m2 =

[
0 0
1
2

1
2

]}
.

Then, the corresponding Göpel systems are given by:

G =

{[
0 0
0 0

]
,

[
0 0
0 1

2

]
,

[
0 0
1
2 0

]
,

[
0 0
1
2

1
2

]}
b1G =

{[
1
2 0
0 0

]
,

[
1
2 0
0 1

2

]
,

[
1
2 0
1
2 0

]
,

[
1
2 0
1
2

1
2

]}
b2G =

{[
0 1

2
1
2 0

]
,

[
0 1

2
1
2

1
2

]
,

[
0 1

2
0 0

]
,

[
0 1

2
0 1

2

]}
b3G =

{[
1
2

1
2

1
2 0

]
,

[
1
2

1
2

1
2

1
2

]
,

[
1
2

1
2

0 0

]
,

[
1
2

1
2

0 1
2

]}
Notice that from all four cosets, only G has all even characteristics as noticed in
Corollary 3. Using the Prop. 4 we have the following six identities for the above
Göpel group. 

θ25θ
2
6 = θ21θ

2
4 − θ22θ23

θ45 + θ46 = θ41 − θ42 − θ43 + θ44
θ27θ

2
9 = θ21θ

2
3 − θ22θ24

θ47 + θ49 = θ41 − θ42 + θ43 − θ44
θ28θ

2
10 = θ21θ

2
2 − θ23θ24

θ48 + θ410 = θ41 + θ42 − θ43 − θ44
These identities express even theta constants in terms of four theta constants. We
call them fundamental theta constants θ1, θ2, θ3, θ4.

Next we find the relation between theta characteristics and branch points of a
genus two curve.

Lemma 8 (Picard). Let a genus 2 curve be given by

(4) Y 2 = X(X − 1)(X − λ)(X − µ)(X − ν).

Then, λ, µ, ν can be written as follows:

(5) λ =
θ21θ

2
3

θ22θ
2
4

, µ =
θ23θ

2
8

θ24θ
2
10

, ν =
θ21θ

2
8

θ22θ
2
10

.
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Proof. There are several ways for relating λ, µ, ν to theta constants, depending on
the ordering of the branch points of the curve. Let B = {ν, µ, λ, 1, 0} be the branch
points of the curves in this order and U = {ν, λ, 0} be the set of odd branch points.
Using Lemma 7 we have the following set of equations of theta constants and branch
points.

(6)

θ41 = Aνλ(µ− 1)(ν − λ) θ42 = Aµ(µ− 1)(ν − λ)
θ43 = Aµλ(µ− λ)(ν − λ) θ44 = Aν(ν − λ)(µ− λ)
θ45 = Aλµ(ν − 1)(ν − µ) θ46 = A (ν − µ)(ν − λ)(µ− λ)
θ47 = Aµ(ν − 1)(λ− 1)(ν − λ) θ48 = Aµν(ν − µ)(λ− 1)
θ49 = Aν(µ− 1)(λ− 1)(µ− λ) θ410 = Aλ(λ− 1)(ν − µ),

where A is a constant. Choosing the appropriate equation from the set Eq. (6) we
have the following:

λ2 =

(
θ21θ

2
3

θ22θ
2
4

)2

µ2 =

(
θ23θ

2
8

θ24θ
2
10

)2

ν2 =

(
θ21θ

2
8

θ22θ
2
10

)2

.

Each value for (λ, µ, ν) gives isomorphic genus 2 curves. Hence, we can choose

λ =
θ21θ

2
3

θ22θ
2
4

, µ =
θ23θ

2
8

θ24θ
2
10

, ν =
θ21θ

2
8

θ22θ
2
10

.

This completes the proof.
�

One of the main goals of this paper is to describe each locus of genus 2 curves
with fixed automorphism group in terms of the fundamental theta constants. We
have the following

Corollary 9. Every genus two curve can be written in the form:

y2 = x (x− 1)

(
x− θ21θ

2
3

θ22θ
2
4

) (
x2 − θ22 θ

2
3 + θ21 θ

2
4

θ22 θ
2
4

· αx+
θ21θ

2
3

θ22θ
2
4

α2

)
,

where α =
θ28
θ210

and in terms of θ1, . . . , θ4 is given by

α2 +
θ41 + θ42 − θ43 − θ44
θ21θ

2
2 − θ23θ24

α+ 1 = 0

Furthermore, if α = ±1 then V4 ↪→ Aut(X ).

Proof. Let’s write the genus 2 curve in the following form:

Y 2 = X(X − 1)(X − λ)(X − µ)(X − ν)

where λ, µ, ν are given by Eq. (5). Let α :=
θ28
θ210

. Then,

µ =
θ23
θ24
α, ν =

θ21
θ22
α

Using the following two identities,

θ48 + θ410 = θ41 + θ42 − θ43 − θ44
θ28θ

2
10 = θ21θ

2
2 − θ23θ24

(7)

we have,

(8) α2 +
θ41 + θ42 − θ43 − θ44
θ21θ

2
2 − θ23θ24

α+ 1 = 0
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If α = ±1 the µν = λ. It is well known that this implies that the genus 2 curve has
an elliptic involution. Hence, V4 ↪→ Aut(X ). �

Remark 10. i) From the above we have that θ48 = θ410 implies that V4 ↪→ Aut(X ).
Lemma 15 determines a necessary and equivalent statement when V4 ↪→ Aut(X ).

ii) The last part of the lemma above shows that if θ48 = θ410 then all coefficients
of the genus 2 curve are given as rational functions of the 4 fundamental theta
functions. Such fundamental theta functions determine the field of moduli of the
given curve. Hence, the curve is defined over its field of moduli.

Corollary 11. Let X be a genus 2 curve which has an elliptic involution. Then X
is defined over its field of moduli.

This was the main result of [1].

3.1. Describing the locus of genus two curves with fixed automorphism
group by theta constants. The locus L2 of genus 2 curves X which have an
elliptic involution is a closed subvariety of M2. Let W = {α1, α2, β1, β2, γ1, γ2}
be the set of roots of the binary sextic and A and B be subsets of W such that
W = A∪B and |A∩B| = 2. We define the cross ratio of the two pairs z1, z2; z3, z4
by

(z1, z2; z3, z4) =
z1; z3, z4
z2; z3, z4

=
z1 − z3
z1 − z4

:
z2 − z3
z2 − z4

.

Take A = {α1, α2, β1, β2} and B = {γ1, γ2, β1, β2}. Jacobi [2] gives a description of
L2 in terms of the cross ratios of the elements of W.

α1 − β1
α1 − β2

:
α2 − β1
α2 − β2

=
γ1 − β1
γ1 − β2

:
γ2 − β1
γ2 − β2

We recall that the following identities hold for cross ratios:

(α1, α2 ;β1, β2) = (α2, α1;β2, β1) = (β1, β2;α1, α2) = (β2, β1;α2, α1)

and

(α1, α2;∞, β2) = (∞, β2;α1, α2) = (β2;α2, α1)

Next we want to use this result to determine relations among theta functions for a
genus 2 curve in the locus L2. Let X be any genus 2 curve given by equation

Y 2 = X(X − 1)(X − a1)(X − a2)(X − a3)

We take ∞ ∈ A ∩ B. Then there are five cases for α ∈ A ∩ B, where α is an
element of the set{0, 1, a1, a2, a3}. For each of these cases there are three possible
relationships for cross ratios as described below:
i) A ∩B = {0,∞}: The possible cross ratios are

(a1, 1;∞, 0) = (a3, a2;∞, 0)

(a2, 1;∞, 0) = (a1, a3;∞, 0)

(a1, 1;∞, 0) = (a2, a3;∞, 0)

ii) A ∩B = {1,∞}: The possible cross ratios are

(a1, 0;∞, 1) = (a2, a3;∞, 1)

(a1, 0;∞, 1) = (a3, a2;∞, 1)

(a2, 0;∞, 1) = (a1, a3;∞, 1)
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iii) A ∩B = {a1,∞}: The possible cross ratios are

(1, 0;∞, a1) = (a3, a2;∞, a1)

(a2, 0;∞, a1) = (1, a3;∞, a1)

(1, 0;∞, a1) = (a2, a3;∞, a1)

iv) A ∩B = {a2,∞}: The possible cross ratios are

(1, 0;∞, a2) = (a1, a3;∞, a2)

(1, 0;∞, a2) = (a3, a1;∞, a2)

(a1, 0;∞, a2) = (1, a3;∞, a2)

v) A ∩B = {a3,∞}: The possible cross ratios are

(a1, 0;∞, a3) = (1, a2;∞, a3)

(1, 0;∞, a3) = (a2, a1;∞, a3)

(1, 0;∞, a3) = (a1, a2;∞, a3)

We summarize these relationships in the following table:

Cross ratio f(a1, a2, a3) = 0 theta constants

1 (1, 0;∞, a1) = (a3, a2;∞, a1) a1a2 + a1 − a3a1 − a2 −θ21θ
2
3θ

2
8θ

2
2 − θ

2
1θ

2
2θ

2
4θ

2
10+

θ41θ
2
3θ

2
10 + θ23θ

4
2θ

2
10

2 (a2, 0;∞, a1) = (1, a3;∞, a1) a1a2 − a1 + a3a1 − a3a2 θ23θ
2
8θ

2
2θ

2
4 − θ

2
2θ

4
4θ

2
10+

θ21θ
2
3θ

2
4θ

2
10 − θ

4
3θ

2
2θ

2
10

3 (1, 0;∞, a1) = (a2, a3;∞, a1) a1a2 − a1 − a3a1 + a3 −θ48θ
2
3θ

2
2 + θ28θ

2
2θ

2
10θ

2
4+

θ21θ
2
3θ

2
8θ

2
10 − θ

2
3θ

2
2θ

4
10

4 (1, 0;∞, a2) = (a1, a3;∞, a2) a1a2 − a2 − a3a2 + a3 −θ21θ
4
8θ

2
4 − θ

2
1θ

4
10θ

2
4+

θ28θ
2
2θ

2
10θ

2
4 + θ21θ

2
3θ

2
8θ

2
10

5 (1, 0;∞, a2) = (a3, a1;∞, a2) a1a2 − a1 + a2 − a3a2 −θ21θ
2
8θ

2
3θ

2
4 + θ21θ

2
10θ

4
4+

θ21θ
4
3θ

2
10 − θ

2
3θ

2
2θ

2
10θ

2
4

6 (a1, 0;∞, a2) = (1, a3;∞, a2) a1a2 − a3a1 − a2 + a3a2 −θ21θ
2
8θ

2
2θ

2
4 + θ41θ

2
10θ

2
4−

θ21θ
2
3θ

2
2θ

2
10 + θ42θ

2
4θ

2
10

7 (a1, 0;∞, a3) = (1, a2;∞, a3) a1a2 − a3a1 − a3a2 + a3 −θ48θ
2
2θ

2
4 + θ21θ

2
8θ

2
10θ

2
4−

θ22θ
4
10θ

2
4 + θ23θ

2
8θ

2
2θ

2
10

8 (1, 0;∞, a3) = (a2, a1;∞, a3) a3a1 − a1 − a3a2 + a3 θ48 − θ
4
10

9 (1, 0;∞, a3) = (a1, a2;∞, a3) a3a1 + a2 − a3 − a3a2 θ41θ
2
8θ

2
4 − θ

2
1θ

2
2θ

2
4θ

2
10−

θ21θ
2
3θ

2
8θ

2
2 + θ28θ

4
2θ

2
4

10 (a1, 0;∞, 1) = (a2, a3;∞, 1) −a1 + a3a1 + a2 − a3 θ41θ
2
3θ

2
8 − θ

2
1θ

2
8θ

2
2θ

2
4−

θ21θ
2
3θ

2
2θ

2
10 + θ23θ

2
8θ

4
2

11 (a1, 0;∞, 1) = (a3, a2;∞, 1) a1a2 − a1 − a2 + a3 θ21θ
4
8θ

2
3 − θ

2
1θ

2
8θ

2
10θ

2
4+

θ21θ
2
3θ

4
10 − θ

2
3θ

2
8θ

2
2θ

2
10

12 (a2, 0;∞, 1) = (a1, a3;∞, 1) a1 − a2 + a3a2 − a3 θ21θ
2
8θ

4
4 − θ

2
1θ

2
3θ

2
4θ

2
10+

θ21θ
4
3θ

2
8 − θ

2
3θ

2
8θ

2
2θ

2
4

13 (a1, 1;∞, 0) = (a3, a2;∞, 0) a1a2 − a3 θ48 − θ
4
10

14 (a2, 1;∞, 0) = (a1, a3;∞, 0) a1 − a3a2 θ43 − θ
4
4

15 (a1, 1;∞, 0) = (a2, a3;∞, 0) a3a1 − a2 θ41 − θ
4
2

Table 1. Relation of theta functions and cross ratios
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Lemma 12. Let X be a genus 2 curve. Then Aut(X )∼=V4 if and only if the theta
functions of X satisfy

(θ
4
1 − θ

4
2)(θ

4
3 − θ

4
4)(θ

4
8 − θ

4
10)(−θ

2
1θ

2
3θ

2
8θ

2
2 − θ

2
1θ

2
2θ

2
4θ

2
10 + θ

4
1θ

2
3θ

2
10 + θ

2
3θ

4
2θ

2
10)

(θ
2
3θ

2
8θ

2
2θ

2
4 − θ

2
2θ

4
4θ

2
10 + θ

2
1θ

2
3θ

2
4θ

2
10 − θ

4
3θ

2
2θ

2
10)(−θ

4
8θ

2
3θ

2
2 + θ

2
8θ

2
2θ

2
10θ

2
4 + θ

2
1θ

2
3θ

2
8θ

2
10 − θ

2
3θ

2
2θ

4
10)

(−θ21θ
4
8θ

2
4 − θ

2
1θ

4
10θ

2
4 + θ

2
8θ

2
2θ

2
10θ

2
4 + θ

2
1θ

2
3θ

2
8θ

2
10)(−θ

2
1θ

2
8θ

2
3θ

2
4 + θ

2
1θ

2
10θ

4
4 + θ

2
1θ

4
3θ

2
10 − θ

2
3θ

2
2θ

2
10θ

2
4)

(−θ21θ
2
8θ

2
2θ

2
4 + θ

4
1θ

2
10θ

2
4 − θ

2
1θ

2
3θ

2
2θ

2
10 + θ

4
2θ

2
4θ

2
10)(−θ

4
8θ

2
2θ

2
4 + θ

2
1θ

2
8θ

2
10θ

2
4 − θ

2
2θ

4
10θ

2
4 + θ

2
3θ

2
8θ

2
2θ

2
10)

(θ
4
1θ

2
8θ

2
4 − θ

2
1θ

2
2θ

2
4θ

2
10 − θ

2
1θ

2
3θ

2
8θ

2
2 + θ

2
8θ

4
2θ

2
4)(θ

4
1θ

2
3θ

2
8 − θ

2
1θ

2
8θ

2
2θ

2
4 − θ

2
1θ

2
3θ

2
2θ

2
10 + θ

2
3θ

2
8θ

4
2)

(θ
2
1θ

4
8θ

2
3 − θ

2
1θ

2
8θ

2
10θ

2
4 + θ

2
1θ

2
3θ

4
10 − θ

2
3θ

2
8θ

2
2θ

2
10)(θ

2
1θ

2
8θ

4
4 − θ

2
1θ

2
3θ

2
4θ

2
10 + θ

2
1θ

4
3θ

2
8 − θ

2
3θ

2
8θ

2
2θ

2
4) = 0

(9)

However, we are unable to get a similar result for cases D8 or D12 by this argument.
Instead, we will use the invariants of genus 2 curves and a more computational
approach. In the process, we will offer a different proof of the lemma above.

Lemma 13. i) The locus L2 of genus 2 curves X which have a degree 2 elliptic
subcover is a closed subvariety of M2. The equation of L2 is given by

8748J10J
4
2J

2
6 − 507384000J

2
10J

2
4J2 − 19245600J

2
10J4J

3
2 − 592272J10J

4
4J

2
2 + 77436J10J

3
4J

4
2

−81J3
2J

4
6 − 3499200J10J2J

3
6 + 4743360J10J

3
4J2J6 − 870912J10J

2
4J

3
2J6 + 3090960J10J4J

2
2J

2
6

−78J5
2J

5
4 − 125971200000J

3
10 + 384J

6
4J6 + 41472J10J

5
4 + 159J

6
4J

3
2 − 236196J

2
10J

5
2 − 80J

7
4J2

−47952J2J4J4
6 + 104976000J

2
10J

2
2J6 − 1728J

5
4J

2
2J6 + 6048J

4
4J2J

2
6 − 9331200J10J

2
4J

2
6

+12J
6
2J

3
4J6 + 29376J

2
2J

2
4J

3
6 − 8910J

3
2J

3
4J

2
6 − 2099520000J

2
10J4J6 + 31104J

5
6 − 6912J

3
4J

3
64

−J7
2J

4
4 − 5832J10J

5
2J4J6 − 54J

5
2J

2
4J

2
6 + 108J

4
2J4J

3
6 + 972J10J

6
2J

2
4 + 1332J

4
2J

4
4J6 =0

(10)

ii) The locus of genus 2 curves X with Aut(X )∼=D8 is given by the equation of L2

and

(11) 1706J2
4J

2
2 + 2560J3

4 + 27J4J
4
2 − 81J3

2J6 − 14880J2J4J6 + 28800J2
6 = 0

iii) The locus of genus 2 curves X with Aut(X )∼=D12 is

−J4J4
2 + 12J3

2J6 − 52J2
4J

2
2 + 80J3

4 + 960J2J4J6 − 3600J2
6 = 0

864J10J
5
2 + 3456000J10J

2
4J2 − 43200J10J4J

3
2 − 2332800000J2

10 − J2
4J

6
2

−768J4
4J

2
2 + 48J3

4J
4
2 + 4096J5

4 = 0

(12)

Our goal is to express each of the above loci in terms of the theta characteristics.
We obtain the following result.

Theorem 14. Let X be a genus 2 curve. Then the following hold:
i) Aut(X )∼=V4 if and only if the relations of theta functions given Eq. (9) holds.
ii) Aut(X )∼=D8 if and only if Eq. (1) in [10] is satisfied.
iii) Aut(X )∼=D12 if and only if Eq. (2) in [10] is satisfied.

Proof. Part i) of the theorem is Lemma 12. Here we give a somewhat different
proof. Assume that X is a genus 2 curve with equation

Y 2 = X(X − 1)(X − a1)(X − a2)(X − a3)

whose classical invariants satisfy Eq. (10). Expressing the classical invariants of
X in terms of a1, a2, a3, substituting them into (10), and factoring the resulting
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equation yields

(a1a2 − a2 − a3a2 + a3)
2(a1a2 − a1 + a3a1 − a3a2)2(a1a2 − a3a1 − a3a2 + a3)

2

(a3a1 − a1 − a3a2 + a3)
2(a1a2 + a1 − a3a1 − a2)2(a1a2 − a1 − a3a1 + a3)

2

(a3a1 + a2 − a3 − a3a2)2(−a1 + a3a1 + a2 − a3)2(a1a2 − a1 − a2 + a3)
2

(a1a2 − a1 + a2 − a3a2)2(a1 − a2 + a3a2 − a3)2(a1a2 − a3a1 − a2 + a3a2)
2

(a1a2 − a3)2(a1 − a3a2)2(a3a1 − a2)2 =0

(13)

It is no surprise that we get the 15 factors of Table 1. The relations of theta
constants follow from the table. ii) Let X be a genus 2 curve which has an elliptic
involution. Then X is isomorphic to a curve with equation

Y 2 = X(X − 1)(X − a1)(X − a2)(X − a1a2).

If Aut(X )∼=D8 then the SL2(k)-invariants of such curve must satisfy Eq. (11).
Then, we get the equation in terms of a1, a2. By writing the relation a3 = a1a2 in
terms of theta constants, we get θ44 = θ43. All the results above lead to part ii) of
the theorem. iii) The proof of this part is similar to part ii). �

We would like to express the conditions of the previous lemma in terms of the
fundamental theta constants only.

Lemma 15. Let X be a genus 2 curve. Then we have the following:

i): V4 ↪→ Aut(X ) if and only if the fundamental theta constants of X satisfy

(
θ43 − θ44

) (
θ41 − θ43

) (
θ42 − θ44

) (
θ41 − θ44

) (
θ43 − θ42

) (
θ41 − θ42

)(
−θ24 + θ23 + θ21 − θ22

) (
θ24 − θ23 + θ21 − θ22

) (
−θ24 − θ23 + θ22 + θ21

) (
θ24 + θ23 + θ22 + θ21

)(
θ1

4θ2
4 + θ3

4θ2
4 + θ1

4θ3
4 − 2 θ21θ

2
2θ

2
3θ

2
4

) (
−θ34θ24 − θ24θ44 − θ34θ44 + 2 θ21θ

2
2θ

2
3θ

2
4

)(
θ2

4θ4
4 + θ1

4θ2
4 + θ1

4θ4
4 − 2 θ21θ

2
2θ

2
3θ

2
4

) (
θ1

4θ4
4 + θ3

4θ4
4 + θ1

4θ3
4 − 2 θ21θ

2
2θ

2
3θ

2
4

)
=0

(14)

ii: D8 ↪→ Aut(X ) if and only if the fundamental theta constants of X satisfy
Eq. (3) in [10]

iii: D6 ↪→ Aut(X ) if and only if the fundamental theta constants of X satisfy
Eq. (4) in [10]

Proof. Notice that Eq. (9) contains only θ1, θ2, θ3, θ4, θ8 and θ10. Using Eq. (7), we
can eliminate θ8 and θ10 from Eq. (9). The J10 invariant of any genus two curve is
given by the following in terms of theta constants:

J10 =
θ121 θ

12
3

θ282 θ
28
4 θ

40
10

(θ21θ
2
2 − θ23θ24)12(θ21θ

2
4 − θ22θ23)12(θ21θ

2
3 − θ22θ24)12.

Since J10 6= 0 we can cancel the factors (θ21θ
2
2−θ23θ24), (θ21θ

2
4−θ22θ23) and (θ21θ

2
3−θ22θ24)

from the equation of V4 locus. The result follows from Theorem 14. The proof of
part ii) and iii) is similar and we avoid details. �

Remark 16. i) For the other two loci, we can also obtain equations in terms of the
fundamental theta constants. However, such equations are big and we don’t display
them here.

ii) By using Frobenius’s relations we get

J10 =
(θ1θ3)

12

(θ2θ4)
28
θ1610

(θ5θ6θ7θ8θ9)
24
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Hence, θi 6= 0 for i = 1, 3, 5, . . . 9.

4. Genus 3 cyclic curves

For genus 3 we have hyperelliptic and non-hyperelliptic algebraic curves. The
following table gives all possible genus 3 cyclic algebraic curves; see [5] for details.
The first 11 cases are for the hyperelliptic curves and the last 12 cases are for the
non-hyperelliptic curves.

Aut(Xg) equation Id.

1 Z2 y2 = x(x− 1)(x5 + ax4 + bx3 + cx2 + dx+ e) (2, 1)

2 Z2 × Z2 y2 = x8 + a3x
6 + a2x

4 + a1x
2 + 1 (4, 2)

3 Z4 y2 = x(x2 − 1)(x4 + ax2 + b) (4, 1)
4 Z14 y2 = x7 − 1 (14, 2)

5 Z3
2 y2 = (x4 + ax2 + 1)(x4 + bx2 + 1) (8, 5)

6 Z2 ×D8 y2 = x8 + ax4 + 1 (16, 11)
7 Z2 × Z4 y2 = (x4 − 1)(x4 + ax2 + 1) (8, 2)
8 D12 y2 = x(x6 + ax3 + 1) (12, 4)
9 U6 y2 = x(x6 − 1) (24, 5)
10 V8 y2 = x8 − 1 (32, 9)

11 Z2 × S4 y2 = x8 + 14x2 + 1 (48, 48)

12 V4 x4 + y4 + ax2y2 + bx2 + cy2 + 1 = 0 (4,2)
13 D8 take b = c (8,3)
14 S4 take a = b = c (24,12)
15 C2

4oS3 take a = b = c = 0 or y4 = x(x2 − 1) (96,64)

16 16 y4 = x(x− 1)(x− t) (16,13)
17 48 y4 = x3 − 1 (48,33)

18 C3 y3 = x(x− 1)(x− s)(x− t) (3,1)
19 C6 take s = 1− t (6,2)
20 C9 y3 = x(x3 − 1) (9,1)

21 L3(2) x3y + y3z + z3x = 0 (168,42)

22 S3 a(x4 + y4 + z4) + b(x2y2 + x2z2 + y2z2)+ (6,1)
c(x2yz + y2xz + z2xy) = 0

23 C2 x4 + x2(y2 + az2) + by4 + cy3z + dy2z2 (2,1)
+eyz3 + gz4 = 0, either e = 1 or g = 1

Table 2. The list of automorphism groups of genus 3 and their equations



THETANULLS OF CYCLIC CURVES OF SMALL GENUS 13

4.1. Theta functions for hyperelliptic curves. For genus three hyperelliptic
curve we have 28 odd theta characteristics and 36 even theta characteristics. The
following shows the corresponding characteristics for each theta function. The first
36 are for the even functions and the last 28 are for the odd functions. For simplicity,

we denote them by θi =

[
a
b

]
instead of θi

[
a
b

]
(z, τ).

θ1 =

[
0 0 0
0 0 0

]
, θ2 =

[
1
2

0 1
2

1
2

1
2

1
2

]
, θ3 =

[
1
2

1
2

1
2

0 0 0

]
, θ4 =

[
0 0 0
1
2

0 0

]
,

θ5 =

[
1
2

0 0
0 1

2
0

]
, θ6 =

[
1
2

1
2

0
0 0 1

2

]
, θ7 =

[
0 1

2
1
2

1
2

0 0

]
, θ8 =

[
0 0 1

2

0 1
2

0

]
,

θ9 =

[
0 0 0
0 0 1

2

]
, θ10 =

[
1
2

0 0
0 0 0

]
, θ11 =

[
1
2

1
2

0
1
2

1
2

0

]
, θ12 =

[
1
2

1
2

1
2

1
2

0 1
2

]
θ13 =

[
0 0 0
1
2

1
2

0

]
, θ14 =

[
0 1

2
0

0 0 0

]
, θ15 =

[
0 1

2
1
2

0 1
2

1
2

]
, θ16 =

[
0 1

2
0

1
2

0 1
2

]
,

θ17 =

[
0 0 0
0 1

2
1
2

]
, θ18 =

[
0 0 1

2

0 0 0

]
, θ19 =

[
1
2

1
2

0
1
2

1
2

1
2

]
, θ20 =

[
0 1

2
0

0 0 1
2

]
,

θ21 =

[
0 0 0
0 1

2
0

]
, θ22 =

[
0 1

2
1
2

0 0 0

]
, θ23 =

[
1
2

1
2

1
2

1
2

1
2

0

]
, θ24 =

[
1
2

0 1
2

1
2

0 1
2

]
θ25 =

[
1
2

0 0
0 0 1

2

]
, θ26 =

[
0 0 0
1
2

1
2

1
2

]
, θ27 =

[
0 1

2
0

1
2

0 0

]
, θ28 =

[
0 0 1

2
1
2

1
2

0

]
,

θ29 =

[
1
2

0 1
2

0 0 0

]
, θ30 =

[
1
2

1
2

1
2

0 1
2

1
2

]
, θ31 =

[
1
2

0 1
2

0 1
2

0

]
, θ32 =

[
0 0 1

2
1
2

0 0

]
,

θ33 =

[
0 1

2
1
2

1
2

1
2

1
2

]
, θ34 =

[
0 0 0
1
2

0 1
2

]
, θ35 =

[
1
2

0 0
0 1

2
1
2

]
, θ36 =

[
1
2

1
2

0
0 0 0

]
θ37 =

[
1
2

0 0
1
2

0 0

]
, θ38 =

[
1
2

1
2

0
0 1

2
0

]
, θ39 =

[
1
2

1
2

1
2

0 0 1
2

]
, θ40 =

[
0 1

2
0

1
2

1
2

0

]
,

θ41 =

[
0 1

2
1
2

1
2

0 1
2

]
, θ42 =

[
0 0 1

2

0 1
2

1
2

]
, θ43 =

[
1
2

1
2

1
2

1
2

0 0

]
, θ44 =

[
0 1

2
1
2

0 1
2

0

]
,

θ45 =

[
0 0 1

2

0 0 1
2

]
, θ46 =

[
0 1

2
0

0 1
2

1
2

]
, θ47 =

[
1
2

1
2

0
1
2

0 1
2

]
, θ48 =

[
1
2

0 0
1
2

1
2

0

]
θ49 =

[
1
2

0 1
2

1
2

1
2

0

]
, θ50 =

[
1
2

0 0
1
2

0 1
2

]
, θ51 =

[
1
2

1
2

0
0 1

2
1
2

]
, θ52 =

[
0 0 1

2
1
2

1
2

1
2

]
,

θ53 =

[
0 1

2
1
2

0 0 1
2

]
, θ54 =

[
0 1

2
0

0 1
2

0

]
, θ55 =

[
1
2

0 1
2

0 0 1
2

]
, θ56 =

[
1
2

1
2

1
2

1
2

1
2

1
2

]
,

θ57 =

[
1
2

1
2

0
1
2

0 0

]
, θ58 =

[
1
2

1
2

1
2

0 1
2

0

]
, θ59 =

[
1
2

0 1
2

1
2

0 0

]
, θ60 =

[
1
2

0 0
1
2

1
2

1
2

]
θ61 =

[
1
2

0 1
2

0 1
2

1
2

]
, θ62 =

[
0 0 1

2
1
2

0 1
2

]
, θ63 =

[
0 1

2
1
2

1
2

1
2

0

]
, θ64 =

[
0 1

2
0

1
2

1
2

1
2

]
It can be shown that one of the corresponding even theta constants is zero. Let’s

pick S = {1, 2, 3, 4, 5, 6, 7} and U = {1, 3, 5, 7}. Let T = U. Then, by Theorem 5 the

theta constant corresponding to the characteristic ηT =

[
1
2

1
2

1
2

1
2 0 1

2

]
is zero. That

is θ12(0) = 0. Next, we give the relation between theta characteristics and branch
points of the genus three hyperelliptic curve. Let B = {a1, a2, a3, a4, a5, 1, 0} be the
finite branch points of the curves and U = {a1, a3, a5, 0} be the set of odd branch
points.
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Lemma 17. Any genus 3 hyperelliptic curve is isomorphic to a curve given by the
equation

Y 2 = X(X − 1)(X − a1)(X − a2)(X − a3)(X − a4)(X − a5),

where

a1 =
θ231θ

2
21

θ234θ
2
24

, a2 =
θ231θ

2
13

θ29θ
2
24

, a3 =
θ211θ

2
31

θ224θ
2
6

, a4 =
θ221θ

2
7

θ215θ
2
34

, a5 =
θ213θ

2
1

θ226θ
2
9

.

Proof. By using Lemma 7 we have the following set of equation of theta constants
and branch points which are ordered a1, a2, a3, a4, a5, 0, 1,∞. We use the notation
(i, j) for (ai − aj).

θ1
4 = A (1, 6) (3, 6) (5, 6) (1, 3) (1, 5) (3, 5) (2, 4) (2, 7) (4, 7)

θ2
4 = A (3, 6) (5, 6) (3, 5) (1, 2) (1, 4) (2, 4) (3, 7) (5, 7)

θ3
4 = A (3, 6) (4, 6) (3, 4) (1, 2) (1, 5) (2, 5) (1, 7) (2, 7) (5, 7)

θ4
4 = A (2, 6) (3, 6) (5, 6) (2, 3) (2, 5) (3, 5) (1, 4) (1, 7) (4, 7)

θ5
4 = A (4, 6) (5, 6) (4, 5) (1, 2) (1, 3) (2, 3) (1, 7) (2, 7) (3, 7)

θ6
4 = A (1, 6) (2, 6) (3, 4) (3, 5) (4, 5) (1, 2) (1, 7) (2, 7)

θ7
4 = A (2, 6) (3, 6) (4, 6) (1, 5) (2, 3) (2, 4) (3, 4) (1, 7) (5, 7)

θ8
4 = A (2, 6) (3, 6) (2, 3) (1, 4) (1, 5) (4, 5) (1, 7) (4, 7) (5, 7)

θ9
4 = A (1, 6) (3, 6) (1, 3) (2, 4) (2, 5) (4, 5) (1, 7) (3, 7)

θ10
4 = A (3, 6) (5, 6) (3, 5) (1, 2) (1, 4) (2, 4) (1, 7) (2, 7) (4, 7)

θ11
4 = A (3, 6) (4, 6) (5, 6) (3, 4) (3, 5) (4, 5) (1, 2) (1, 7) (2, 7)

θ13
4 = A (2, 6) (4, 6) (5, 6) (1, 3) (2, 4) (2, 5) (4, 5) (1, 7) (3, 7)

θ14
4 = A (2, 6) (5, 6) (2, 5) (1, 3) (1, 4) (3, 4) (1, 7) (3, 7) (4, 7)

θ15
4 = A (1, 6) (5, 6) (1, 5) (2, 3) (2, 4) (3, 4) (1, 7) (5, 7)

θ16
4 = A (1, 6) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5) (1, 7)

θ17
4 = A (1, 6) (4, 6) (2, 3) (2, 5) (3, 5) (1, 4) (1, 7) (4, 7)

θ18
4 = A (2, 6) (4, 6) (1, 3) (1, 5) (3, 5) (2, 4) (1, 7) (3, 7) (5, 7)

θ19
4 = A (3, 6) (4, 6) (1, 2) (1, 5) (2, 5) (3, 4) (3, 7) (4, 7)

θ20
4 = A (2, 6) (1, 3) (1, 4) (1, 5) (3, 4) (3, 5) (4, 5) (2, 7)

θ21
4 = A (1, 6) (4, 6) (5, 6) (1, 4) (1, 5) (4, 5) (2, 3) (2, 7) (3, 7)

θ22
4 = A (1, 6) (3, 6) (4, 6) (1, 3) (1, 4) (3, 4) (2, 5) (2, 7) (5, 7)

θ23
4 = A (1, 6) (2, 6) (3, 4) (3, 5) (4, 5) (1, 2) (3, 7) (4, 7) (5, 7)

θ24
4 = A (4, 6) (5, 6) (1, 2) (1, 3) (2, 3) (4, 5) (4, 7) (5, 7)

θ25
4 = A (3, 6) (1, 2) (1, 4) (1, 5) (2, 4) (2, 5) (4, 5) (3, 7)

θ26
4 = A (2, 6) (4, 6) (1, 3) (1, 5) (3, 5) (2, 4) (2, 7) (4, 7)

θ27
4 = A (1, 6) (5, 6) (1, 5) (2, 3) (2, 4) (3, 4) (2, 7) (3, 7) (4, 7)

θ28
4 = A (1, 6) (3, 6) (1, 3) (2, 4) (2, 5) (4, 5) (2, 7) (4, 7) (5, 7)

θ29
4 = A (1, 6) (2, 6) (4, 6) (3, 5) (1, 2) (1, 4) (2, 4) (3, 7) (5, 7)

θ30
4 = A (5, 6) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4) (5, 7)

θ31
4 = A (1, 6) (2, 6) (3, 6) (1, 2) (1, 3) (2, 3) (4, 5) (4, 7) (5, 7)
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θ32
4 = A (1, 6) (4, 6) (2, 3) (2, 5) (3, 5) (1, 4) (2, 7) (3, 7) (5, 7)

θ33
4 = A (2, 6) (5, 6) (1, 3) (1, 4) (3, 4) (2, 5) (2, 7) (5, 7)

θ34
4 = A (2, 6) (3, 6) (1, 4) (1, 5) (4, 5) (2, 3) (2, 7) (3, 7)

θ35
4 = A (4, 6) (1, 2) (1, 3) (1, 5) (2, 3) (2, 5) (3, 5) (4, 7)

θ36
4 = A (1, 6) (2, 6) (5, 6) (1, 2) (1, 5) (2, 5) (3, 4) (3, 7) (4, 7)

By using the set of equations given above we have several choices for a1, · · · , a5 in
terms of theta constants.

Branch Points Possible Ratios

a21

(
θ236θ

2
22

θ233θ
2
19

)2 (
θ231θ

2
21

θ234θ
2
24

)2 (
θ229θ

2
1

θ226θ
2
2

)2
a22

(
θ24θ

2
29

θ22θ
2
17

)2 (
θ236θ

2
7

θ215θ
2
19

)2 (
θ231θ

2
13

θ29θ
2
24

)2
a23

(
θ24θ

2
22

θ233θ
2
17

)2 (
θ211θ

2
31

θ224θ
2
6

)2 (
θ27θ

2
1

θ226θ
2
15

)2
a24

(
θ211θ

2
29

θ22θ
2
6

)2 (
θ221θ

2
7

θ215θ
2
34

)2 (
θ222θ

2
13

θ29θ
2
33

)2
a25

(
θ24θ

2
21

θ234θ
2
17

)2 (
θ211θ

2
36

θ219θ
2
6

)2 (
θ213θ

2
1

θ226θ
2
9

)2
Let’s select the following choices for a1, · · · , a5.

a1 =
θ231θ

2
21

θ234θ
2
24

, a2 =
θ231θ

2
13

θ29θ
2
24

, a3 =
θ211θ

2
31

θ224θ
2
6

, a4 =
θ221θ

2
7

θ215θ
2
34

, a5 =
θ213θ

2
1

θ226θ
2
9

.

This completes the proof. �

Remark 18. Unlike the genus 2 case, here only θ1, θ6, θ7, θ11, θ15, θ24, θ31 are
from one of the Göpel groups.

4.1.1. Genus 3 non-hyperelliptic cyclic curves. Using the Thomae’s like formula for
cyclic curves, for each cyclic curve yn = f(x) one can express the roots of f(x) in
terms of ratios of theta functions as in the hyperelliptic case. In this section we
study such curves for g = 3. We only consider the families of curves with positive
dimension since the curves which belong to 0-dimensional families are well known.
The proof of the following lemma can be found in [12].

Lemma 19. Let f be a meromorphic function on X , and let

(f) =

m∑
i=1

bi −
m∑
i=1

ci

be the divisor defined by f. Let’s take paths from P0 (initial point) to bi and P0 to

ci so that
∑m
i=1

∫ bi
P0
ω =

∑m
i=1

∫ ci
P0
ω.

For an effective divisor P1 + · · ·+ Pg we have

(15) f(P1) · · · f(Pg) =
1

E

∏
k=1

θ(
∑
i

∫ Pi

P0
ω −

∫ bk
P0
ω −4, τ)

θ(
∑
i

∫ Pi

P0
ω −

∫ ck
P0
ω −4, τ)

where E is a constant independent of P1, . . . , Pg, the integrals from P0 to Pi take the
same paths both in the numerator and in the denominator, 4 denotes the Riemann’s

constant and
∫ Pi

P0
ω =

(∫ Pi

P0
ω1, . . . ,

∫ Pi

P0
ωg

)t
.
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Notice that the definition of thetanulls is different in this part from the definitions
of the hyperelliptic case. We define the following three theta constants.

θ1 = θ

[
0 1

6 0
2
3

1
6

2
3

]
θ2 = θ

[
0 1

6 0
1
3

1
6

1
3

]
θ3 = θ

[
0 1

6 0
0 1

6 0

]
Next we consider the cases 16, 18, 19 from Table 4.

Case 18: If the automorphism group is C3 then the equation of X is given by

y3 = x(x− 1)(x− s)(x− t).
Let Qi where i = 1..5 be ramifying points in the fiber of 0, 1, s, t,∞ respectively.
Consider the meromorphic function f = x on X of order 3. Then we have (f) =
3Q1 − 3Q5. By applying the Lemma 19 with P0 = Q5 and an effective divisor
2Q2 +Q3 we have the following.

(16) Es =

3∏
k=1

θ(2
∫ Q2

Q5
ω +

∫ Q3

Q5
ω −

∫ bk
Q5
ω −4, τ)

θ(2
∫ Q2

Q5
ω +

∫ Q3

Q5
ω −4, τ)

Again apply the Lemma 19 with an effective divisor Q2+2Q3 we have the following.

(17) Es2 =

3∏
k=1

θ(
∫ Q2

Q5
ω + 2

∫ Q3

Q5
ω −

∫ bk
Q5
ω −4, τ)

θ(
∫ Q2

Q5
ω + 2

∫ Q3

Q5
ω −4, τ)

By dividing Eq. (17) by Eq. (16) we have,

s =

3∏
k=1

θ(
∫ Q2

Q5
ω + 2

∫ Q3

Q5
ω −

∫ bk
Q5
ω −4, τ)

θ(
∫ Q2

Q5
ω + 2

∫ Q3

Q5
ω −4, τ)

×
3∏
k=1

θ(2
∫ Q2

Q5
ω +

∫ Q3

Q5
ω −4, τ)

θ(2
∫ Q2

Q5
ω +

∫ Q3

Q5
ω −

∫ bk
Q5
ω −4, τ)

(18)

By a similar argument we have

t =

3∏
k=1

θ(
∫ Q2

Q5
ω + 2

∫ Q4

Q5
ω −

∫ bk
Q5
ω −4, τ)

θ(
∫ Q2

Q5
ω + 2

∫ Q4

Q5
ω −4, τ)

×
3∏
k=1

θ(2
∫ Q2

Q5
ω +

∫ Q4

Q5
ω −4, τ)

θ(2
∫ Q2

Q5
ω +

∫ Q4

Q5
ω −

∫ bk
Q5
ω −4, τ)

(19)

Computing the right hand side of Eq. (18) and Eq. (19) was the one of the main
points of [11]. Finally, we have

s =
θ32
θ31
, and r =

θ33
θ31
.

Case 19: If the group is C6 then the equation is y3 = x(x− 1)(x− s)(x− t) with
s = 1− t. By using results from case 18, we have

θ32 = θ31 − θ33.
Case 16: In this case the equation of X is given by

y4 = x(x− 1)(x− t).
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This curve has 4 ramifying points Qi where i = 1..4 in the fiber of 0, 1, t,∞ respec-
tively. Consider the meromorphic function f = x on X of order 4. Then we have
(f) = 4Q1−4Q4. By applying the Lemma 19 with P0 = Q4 and an effective divisor
2Q2 +Q3 we have the following.

(20) Et =

4∏
k=1

θ(2
∫ Q2

Q4
ω +

∫ Q3

Q4
ω −

∫ bk
Q4
ω −4, τ)

θ(2
∫ Q2

Q4
ω +

∫ Q3

Q4
ω −4, τ)

Again apply the Lemma 19 with an effective divisor Q2+2Q3 we have the following.

(21) Et2 =

4∏
k=1

θ(
∫ Q2

Q4
ω + 2

∫ Q3

Q4
ω −

∫ bk
Q4
ω −4, τ)

θ(
∫ Q2

Q4
ω + 2

∫ Q3

Q4
ω −4, τ)

We have the following by dividing Eq. (21) by Eq. (20)

t =

4∏
k=1

θ(
∫ Q2

Q4
ω + 2

∫ Q3

Q4
ω −

∫ bk
Q4
ω −4, τ)

θ(
∫ Q2

Q4
ω + 2

∫ Q3

Q4
ω −4, τ)

×
4∏
k=1

θ(2
∫ Q2

Q4
ω +

∫ Q3

Q4
ω −4, τ)

θ(2
∫ Q2

Q4
ω +

∫ Q3

Q4
ω −

∫ bk
Q4
ω −4, τ)

(22)

In order to compute the explicit formula for t one has to find the integrals on the
right hand side. Such computations are long and tedious and we intend to include
them in further work.

Remark 20. In the case 16) of Table 4, the parameter t is given by

θ[e]4 = A(t− 1)4t2,

where [e] is the theta characteristics corresponding to the partition ({1}, {2}, {3}, {4})
and A is a constant; see [8] for details. However, this is not satisfactory since we
would like t as a rational function in terms of theta. The methods in [8] do not lead
to another relation among t and the thetanulls since the only partition we could
take is the above.

Summarizing all of the above we have:

Lemma 21. Let X be a non-hyperelliptic genus 3 curve. The following are true:

i): If Aut(X )∼=C3, then X is isomorphic to a curve with equation

y3 = x(x− 1)

(
x− θ32

θ31

)(
x− θ33

θ31

)
.

ii): If Aut(X )∼=C6, then X is isomorphic to a curve with equation

y3 = x(x− 1)

(
x− θ32

θ31

)(
x− θ33

θ31

)
with θ32 = θ31 − θ33.

iii): If Aut(X ) is isomorphic to the group with GAP identity (16, 13), then X
is isomorphic to a curve with equation

y4 = x(x− 1)(x− t) with

where t is given by Eq. (22).
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It seems possible to generalize such techniques of computing the branch points
in terms of the theta functions for any cyclic cover of the projective line. We intend
to pursue the ideas of these papers in further work.
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References

[1] G. Cardona, J. Quer, Field of moduli and field of definition for curves of genus 2. Compu-
tational aspects of algebraic curves, 71–83, Lecture Notes Ser. Comput., 13, World Sci. Publ.,

Hackensack, NJ, 2005.

[2] A. Krazer, Lehrbuch der Thetafunctionen, Chelsea, New York, (1970).
[3] R. Kuhn, Curves of genus 2 with split Jacobian. Trans. Amer. Math. Soc. 307 (1988), no. 1,

41–49.

[4] H.F. Baker, Abelian Function, Abel’s theorem and the allied theory of theta functions,
(1897).

[5] K. Magaard, T. Shaska, S. Shpectorov, H. Vlklein, The locus of curves with pre-
scribed automorphism group. Communications in arithmetic fundamental groups (Kyoto,
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