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Abstract

The development of computational techniques in the last decade has made possible
to attack some classical problems of algebraic geometry. In this survey, we briefly
describe some open problems of computational algebraic geometry which can be
approached from a computational viewpoint.
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Computational algebra is a very active and rapidly growing field, with many
applications to other areas of mathematics, as well as computer science and
engineering. In this survey, however, we will focus on applications that compu-
tational algebra has on classical problems of mathematics and more explicitly
on algebraic geometry.

The first version of this paper appeared in 2003 in the ACM, SIGSAM Bulletin,
Comm. Comp. Alg., see [41]. It was a list of problems on algebraic curves
which could be approached computationally. Some of those problems were
solved and many papers were written based on that modest paper. Since then
I have updated the list with new problems and have included problems on
higher dimensional varieties.

In the first part, we focus on algebraic curves and revisit some of the problems
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of the 2003 list. We report on some progress made on some of the problems
and work done in other problems. Most notably are many papers generated
on the field of moduli versus the field of definition problem.

Part I: Algebraic curves

We survey topics related to automorphisms of algebraic curves, field of moduli
versus field of definition, Hurwitz groups and Hurwitz curves, genus 2 curves
with split Jacobians etc. The problems we suggest are a very narrow trend
in algebraic geometry. However, they provide examples of how new computa-
tional techniques can be used to answer some old questions.

In the second section we describe genus 2 curves with split Jacobians. There
are many papers written on these topic going back to Legendre and Jacobi
in the context of elliptic integrals. The problem we suggest is to compute
the moduli space of covers of degree 5, 7 from a genus 2 curve to an elliptic
curve. This problem is completely computational and could lead to some better
understanding of some conjectures on elliptic curves; see Frey [12].

In section three, we discuss the automorphism groups of algebraic curves.
There has been some important progress on this topic lately, however much
more can be done. Extending some of the results to positive characteristic
would be important. Further we suggest computing the equations of Hurwitz
curves of genus 14 and 17.

In section 4 we study hyperelliptic curves. Finding invariants which classify
the isomorphism classes of hyperelliptic curves of genus g ≥ 3 is still an open
problem. However, it is an easier problem to deal with hyperelliptic curves
with extra automorphisms. The main result here is from [18] where dihedral
invariants were introduced which identify the isomorphism classes of such
curves. Using these dihedral invariants one can determine the automorphism
group of hyperelliptic curves; see [40]. However, implementing such algorithm
is still a challenge since the loci of curves with prescribed automorphism group
are still to be computed in terms of dihedral invariants. The second problem
of section 4 is to find what solvable groups can occur as monodromy groups of
full moduli dimension for coverings of the Riemann sphere with a genus two
curve; see section 4.1, for details.

In the last section we focus on the field of moduli of algebraic curves. This is
a classical problem of algebraic geometry that goes back to Weil and Shimura
among many others. An answer to the conjecture of section 5 would be impor-
tant in algebraic geometry, but also from a computational viewpoint. Problems
7 - 10 suggest some variations of the field of moduli problem.
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1 Genus 2 curves with split Jacobian

First, we focus on genus 2 curves whose Jacobians are isogenous to a prod-
uct of elliptic curves. These curves have been studied extensively in the 19th
century in the context of elliptic integrals. Legendre gave the first example of
such a curve and then Jacobi, Clebsch, Hermite, Goursat, Brioschi, and Bolza
explored them further. In the late 20th century Frey and Kani, Kuhn, Gaudry
and Schost, Shaska and Voelklein, and many others have studied these curves
further. They are of interest for the arithmetic of genus 2 curves as well as
elliptic curves. See [13] for some conjectures that relate this topic with the
arithmetic of elliptic curves.

Let C be a curve of genus 2 and ψ1 : C −→ E1 a map of degree n, from
C to an elliptic curve E1, both curves defined over C. In [42], we show that
this map induces a degree n map φ1 : P1 −→ P1. We determine all possible
ramifications for φ1. If ψ1 : C −→ E1 is maximal (i.e., does not factor non-
trivially) then there exists a maximal map ψ2 : C −→ E2, of degree n, to some
elliptic curve E2 such that there is an isogeny of degree n2 from the Jacobian
JC to E1 ×E2. We say that JC is (n, n)-decomposable. If the degree n is odd
the pair (ψ2, E2) is canonically determined; see [42] for details.

We denote the moduli space of such degree n coverings φ : P1 → P1 by Ln.
This space is studied by Kani and it is called “modular diagonal space”. It can
be viewed also as the Hurwitz space of covers φ : P1 → P1 with ramification
determined above. For our purposes, Ln will simply be the locus of genus 2
curves whose Jacobian is (n, n)-isogenous to a product of two elliptic curves.

The locus L2 of these genus 2 curves is a 2-dimensional subvariety of the moduli
space M2 and is studied in detail in [47]. An equation for L2 is already in the
work of Clebsch and Bolza. We use a birational parametrization of L2 by affine
2-space to study the relation between the j-invariants of the degree 2 elliptic
subfields. This extends work of Geyer, Gaudry, Stichtenoth and others. We
find a 1-dimensional family of genus 2 curves having exactly two isomorphic
elliptic subfields of degree 2; this family is parameterized by the j-invariant
of these subfields. This was a joint project with H. Völklein, published in the
proceedings of professor Abhyankar’s 70th birthday conference.

If n > 2, the surface Ln is less understood. The case n = 3 was initially stud-
ied by Kuhn [20] where some computations for n = 3 were performed. The
computation of the equation of L3 was a major computational effort. A de-
tailed description of this computation is given in [36]. Computational algebra
techniques (i.e., Groebner basis, Buchberger algorithm) and computational al-
gebra packages (i.e, Magma, Maple, GAP) were used. In [36], we study genus
2 function fields K with degree 3 elliptic subfields. We show that the number
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of Aut(K)-classes of such subfields of fixed K is 0,1,2 or 4. Also we compute
an equation for the locus of such K in the moduli space of genus 2 curves.
Equations of Ln for n > 5 are still unknown.

Let C be a genus 2 curve defined over k, char(k) = 0. If k̄(C) has a degree 3
elliptic subfield then the automorphism group Aut(C) is isomorphic to one of
the following: Z2, V4, D8, or D12, where Dn is the dihedral group of order n.
There are exactly six genus two curves C defined over C with Aut(C) isomor-
phic to D8 (resp., D12). We further show that only four (resp., three) of the
curves with group D8 (resp., D12) are defined over Q. This is summarized in
[41].

Continuing on the work of the above papers, we suggest the following problem:

Problem 1 Determine the locus Ln in M2 for n = 5, 7. Further, determine
the relation between the elliptic curves E1 and E2 in each case.

Using techniques from [47], [36] this becomes simple a computational problem.
However, determining such loci requires the use of a Groebner basis algorithm.
Computationally this seems to be difficult for n = 5, 7.

2 The automorphism group of a compact Riemann surface

Computation of automorphism groups of compact Riemann surfaces is a clas-
sical problem that goes back to Schwartz, Hurwitz, Klein, Wiman and many
others. Hurwitz showed that the order of the automorphism group of a com-
pact Riemann surface of genus g is at most 84(g − 1), which is known as the
Hurwitz bound. Klein was mostly interested with the real counterpart of the
problem, hence the term “compact Klein surfaces”. Wiman studied automor-
phism groups of hyperelliptic curves and orders of single automorphisms.

The 20th century produced a huge amount of literature on the subject. Baily
[3] gave an analytical proof of a theorem of Hurwitz: if g ≥ 2, there exists a
curve of genus g with non-trivial automorphisms. In other papers was treated
the number of automorphisms of a Riemann surface; see Accola [1], Maclach-
lan [22], [23] among others. Accola [2] gives a formula relating the genus of
a Riemann surface with the subgroups of the automorphism group; known
as Accola’s theorem. Harvey studied cyclic groups and Lehner and Newman
maximal groups that occur as automorphism groups of Riemann surfaces.

A group of automorphisms of a compact Riemann surface X of genus g can
be faithfully represented via its action on the abelian differentials on X as a
subgroup of GL(g,C). There were many efforts to classify the subgroups G of
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GL(g,C) that so arise, via the cyclic subgroups of G and conditions on the
matrix elements of G. In a series of papers, I. Kuribayashi, A. Kuribayashi,
and Kimura compute the lists of subgroups which arise this way for g = 3, 4,
and 5.

By covering space theory, a finite group G acts (faithfully) on a genus g curve
if and only if it has a genus g generating system; see [26]. Using this purely
group-theoretic condition, Breuer [4] classified all groups that act on a curve
of genus ≤ 48. This was a major computational effort using the computer
algebra system GAP. It greatly improved on several papers dealing with small
genus, by various authors.

Of course, for each group in Breuer’s list, all subgroups are also in the list.
This raises the question how to pick out those groups that occur as the full
automorphism group of a genus g curve. This question is answered in the
following paper.

Let G be a finite group, and g ≥ 2. In a joint project with Magaard, Shpec-
torov, and Völklein we study the locus of genus g curves that admit a G-action
of given type, and inclusions between such loci; see [26]. We use this to study
the locus of genus g curves with prescribed automorphism group G. We com-
pletely classify these loci for g = 3 (including equations for the corresponding
curves), and for g ≤ 10 we classify those loci corresponding to “large” G.

We suggest the following:

Problem 2 Determine the list of possible automorphism groups of algebraic
curves of small genus (i.e., g ≤ 10) in every characteristic.

For g = 2 this list is well known (it appears also in [47]). For g = 3 it can
probably be completed from work of Brock, Wolper and others. However, for
g > 3 such list of groups is unknown. It would be nice to have a complete list
for “small genus”, say g ≤ 10. Since, such lists tend to grow as genus grows,
such information could be organized in a database and be very helpful to the
mathematics community. It is important to mention that such lists are not
known even in characteristic zero.

In [40] (ISSAC 03) a new algorithm was introduced to compute the automor-
phism group of a given hyperelliptic curve. However, this will be discussed in
more detail in the next section.
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2.1 Hurwitz curves

A Hurwitz curve is a genus g curve, defined over an algebraically closed field
of characteristic zero, which has 84(g − 1) automorphisms. A group G that
can be realized as an automorphism group of a Hurwitz curve is called a
Hurwitz group. There are a lot of papers by group-theoretists on Hurwitz
groups, surveyed by Conder. It follows from Hurwitz’s presentation that a
Hurwitz group is perfect. Thus every quotient is again a Hurwitz group, and
if such a quotient is minimal then it is a non-abelian simple group. Several
infinite series of simple Hurwitz groups have been found by Conder, Malle,
Kuribayashi, Zalessky, Zimmermann and others. In 2001, Wilson showed the
monster is a Hurwitz group; see [26] for a complete list of references.

Klein’s quartic is the only Hurwitz curve of genus g ≤ 3. Fricke showed that
the next Hurwitz group occurs for g = 7 and has order 504. Its group is
SL(2, 8), and an equation for it was computed by Macbeath in 1965. Klein’s
quartic and Macbeath’s curve are the only Hurwitz curves whose equations
are known. Further Hurwitz curves occur for g = 14 and g = 17 (and for
no other values of g ≤ 19). It is natural, to try to write equations for these
Hurwitz curves of genus 14, 17.

Problem 3 Compute equations for the Hurwitz curves of genus 14, and pos-
sibly 17.

3 Computational aspects of hyperelliptic curves

It is an interesting and difficult problem in algebraic geometry is to obtain a
generalization of the theory of elliptic modular functions to the case of higher
genus. In the elliptic case this is done by the so-called j-invariant of elliptic
curves. In the case of genus g = 2, Igusa (1960) gives a complete solution
via absolute invariants i1, i2, i3 of genus 2 curves. Generalizing such results to
higher genus is much more difficult due to the existence of non-hyperelliptic
curves. However, even restricted to the hyperelliptic moduli Hg the problem is
still unsolved for g ≥ 3. In other words, there is no known way of identifying
isomorphism classes of hyperelliptic curves of genus g ≥ 3. In terms of classical
invariant theory this means that the field of invariants of binary forms of degree
2g + 2 is not known for g ≥ 3.

The following is a special case of g = 3.

Problem 4 Find invariants which classify the isomorphism classes of genus
3 hyperelliptic curves.
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This is equivalent with determining the field of invariants of binary octavics.
The covariants of binary octavics were determined in 1880 by von Gall. The
generators of the ring of invariants were determined by Shioda in 1965. How-
ever, the field of invariants is unknown. This is a computational problem and
should be possible to solve with now-day techniques. Extending this to positive
characteristic would be quite interesting.

In a joint paper with J. Gutierrez, we find invariants that identify isomorphism
classes of genus g hyperelliptic curves with extra (non-hyperelliptic) involu-
tions; see [18]. This result gives a nice way of doing computations with these
curves. We call such invariants dihedral invariants of hyperelliptic curves. Let
Lg be the locus in Hg of hyperelliptic curves with extra involutions. Lg is
a g-dimensional subvariety of Hg. The dihedral invariants yield a birational
parametrization of Lg. Computationally these invariants give an efficient way
of determining a point of the moduli space Lg. Moreover, we show that the
field of moduli is a field of definition (see below) for all p ∈ L3 such that
|Aut(p)| > 4.

Dihedral invariants can be used to study the field of moduli of hyperelliptic
curves in Lg (cf. section 5). Whether or not the field of moduli is a field of
definition is in general a difficult problem that goes back to Weil, Shimura et
al. In ASCM 2003, we conjecture that for each p ∈ Hg such that |Aut(p)| > 2
the field of moduli is a field of definition. Making use of dihedral invariants we
show that if the Klein 4-group can be embedded in the reduced automorphism
group of p ∈ Lg the our conjecture holds; see [39] for details.

The families of hyperelliptic curves with reduced automorphism group (i.e.,
the automorphism group modulo the hyperelliptic involution) isomorphic to
A4 or a cyclic group, are studied in [37]. We characterize such curves in terms
of classical invariants of binary forms and in terms of dihedral invariants.
Further, we describe algebraically the loci of such curves for g ≤ 12 and show
that for all curves in these loci the field of moduli is a field of definition.

New techniques for computing the automorphism group of a genus g hyper-
elliptic curve Xg are discussed in [40]. The first technique uses the classical
GL2(k)-invariants of binary forms. This is a practical method for curves of
small genus, but has limitations as the genus increases, due to the fact that
such invariants are not known for large genus. The second approach, which
uses dihedral invariants of hyperelliptic curves, is a very convenient method
and works well in all genera. We define the normal decomposition of a hyper-
elliptic curve with extra automorphisms. Then, dihedral invariants are defined
in terms of the coefficients of this normal decomposition. We define such invari-
ants independently of the automorphism group Aut(Xg). However, to compute
such invariants the curve is required to be in its normal form. This requires
solving a nonlinear system of equations. We discover conditions in terms of
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classical invariants of binary forms for a curve to have reduced automorphism
group A4, S4, A5.

In the case of hyperelliptic curves the list of groups are completely determined
in characteristic zero by work of Bujalance, Gromadzky, and Gamboa. We
suggest the following:

Problem 5 Implement a fast algorithm that does the following: Given a genus
g hyperelliptic curve Xg, determine the automorphism group of Xg.

The known algorithms (even the recent ones) approach the problem by solving
a system of equations via Groebner basis. This is normally inefficient and
expensive. We have implemented such programs for small g and these results
can be extended even further. It will be valuable to organize such results in a
computer algebra package and extend to g ≤ 10.

3.1 The monodromy group of a genus 2 curve covering P1

Determining the monodromy group of a generic genus g curve covering P1 is
a problem with a long history which goes back to Zariski and relates to Brill-
Nother theory. Let Xg be generic curve of genus g and f : Xg → P1 a degree
n cover. Denote by G := Mon(f), the monodromy group of f : Xg → P1.
Zariski showed that for g > 6, G is not solvable. For g ≤ 6 the situation is
more technical. This has been studied by many authors e.g., Fried, Guralnick,
Neubauer, Magaard, Völklein et al. However, the problem is open for g = 2.
Guralnick and Fried, in a preprint dated at 1986, have shown that for G
primitive in Sn and solvable there are six possibilities for G. Two of those are
obvious cases S3, S4. The other four groups are D10, Z2

3oD8, AGL2(3), S4 oZ2;
see [14]. The corresponding signatures are:

(22, 22, 22, 22, 22, 22), (23, 23, 23, 23, 24, 24),

(23, 23, 23, 23, 32, 32), (26, 26, 26, 24, 24, 24, 24).

Problem 6 For each case above, determine the locus of such genus 2 curves
in M2 (e.g., the equation of such locus in terms of invariants i1, i2, i3) and its
dimension.

Notice that via the braid group action (using GAP), we can show that the
corresponding Hurwitz spaces are irreducible. We expect in all cases that the
dimension of the locus in M2 is ≤ 2.
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4 Field of moduli versus the field of definition

Let X be a curve defined over k. A field F ⊂ k is called a field of definition of
X if there exists X ′ defined over F such that X ∼=X ′. The field of moduli of
X is a subfield F ⊂ k such that for every automorphism σ of k X is isomorphic
to X σ if and only if σF = id.

The field of moduli is not necessary a field of definition. To determine the
points p ∈Mg where the field of moduli is not a field of definition is a classical
problem in algebraic geometry and has been the focus of many authors, Weil,
Shimura, Belyi, Coombes-Harbater, Fried, Débes, Wolfart among others.

Weil (1954) showed that for every algebraic curve with trivial automorphism
group, the field of moduli is a field of definition. Shimura (1972) gave the first
example of a family of curves such that the field of moduli is not a field of
definition. Shimura’s family were a family of hyperelliptic curves. Further he
adds: “ ... the above results combined together seem to indicate a rather com-
plicated nature of the problem, which almost defies conjecture. A new viewpoint
is certainly necessary to understand the whole situation”

It seems as hyperelliptic curves provide the most interesting examples. For
example, we are not aware of any explicit examples of non-hyperelliptic curves
such that the field of moduli is not a field of definition. Moreover, with the
help of dihedral invariants we have a way of describing the points of moduli
in the locus Lg. Hence, we focus on hyperelliptic curves.

We call a point p ∈ Hg a moduli point. The field of moduli of p is denoted
by Fp. If there is a curve Xg defined over Fp such that p = [Xg], then we call
such a curve a rational model over the field of moduli. Consider the following
problem:

Let the moduli point p ∈ Hg be given. Find necessary and sufficient conditions
that the field of moduli Fp is a field of definition. If p has a rational model Xg

over its field of moduli, then determine explicitly the equation of Xg.

In 1993, Mestre solved the above problem for genus two curves with automor-
phism group Z2. Mestre’s approach is followed by Cardona and Quer (2002)
to prove that for points p ∈ M2 such that |Aut(p)| > 2 the field of moduli is
a field of definition; see also [41] for a different approach. In his talk at ANTS
V (see [41]), the author conjectured the following:

Conjecture 7 Let p ∈ Hg be a moduli point such that |Aut(p)| > 2. Then,
its field of moduli is a field of definition.

The author has proved this conjecture for curves with reduced automorphism
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group isomorphic to A4 and genus g ≤ 12; see [37]. Also the conjecture is true
for g = 3 and |Aut(p)| > 4; see [18]. Furthermore, we intend to investigate the
conjecture in all cases:

Problem 8 Investigate Conjecture 1 in all cases.

In studying the above conjecture, we are looking for more than just a true or
false answer. We would like a way to determine the field of moduli of any hy-
perelliptic curves with extra automorphisms. Generically, dihedral invariants
accomplish this for curves with extra involutions (i.e., locus Lg). However,
there is also the singular locus in Lg which needs to be considered. And then,
there are also hyperelliptic curves with extra automorphisms which are not in
Lg. The upshot would be to solve the following:

Problem 9 Let p ∈ Hg. Determine if the field of moduli is a field of defini-
tion. In that case, explicitly find a rational model of the curve over its field of
moduli.

The above problems lead to the following:

Problem 10 Find necessary and sufficient conditions in terms of invariants
of binary forms such that a hyperelliptic curve has no extra automorphisms.

Such conditions were known to Clebsch and Bolza for g = 2. These conditions
were used by Mestre in [27]. Finding similar conditions for g ≥ 3 would help
extend Mestre’s algorithm to g ≥ 3. Solving the above problem would give a
way of investigating Conjecture 1 without the hypothesis |Aut(p)| > 2.

Problem 11 Find an algorithm which does the following: Let p ∈ Hg such
that |Aut(p)| = 2. Determine if the field of moduli is a field of definition.

5 Theta functions of curves

Let π : Xg → Xg0 be a m-sheeted covering of Riemann surfaces of genus g and
g0, where g0 ≥ 1. The general goal is to find properties that Xg (or rather,
the Jacobian of Xg) has, due to the existence of the covering π. This is done
by the theta functions of the Xg. This is an old problem that goes back to
Riemann and Jacobi. Many other mathematicians have worked on the cases of
small genus and small degree, most notably Frobenius, Prym, Königsberger,
Rosenhein, Göpel, among others. In [?] we give a historical account of such
problems and the significance in modern mathematics.

Let Xg be an irreducible, smooth, projective curve of genus g ≥ 3, defined
over the complex field C. We denote by Mg the moduli space of smooth
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curves of genus g and by Aut(Xg) the automorphism group of Xg. Each group
G ≤ Aut(Xg) acts faithfully on the g-dimensional vector space of holomorphic
differential forms on Xg.

The locus of curves in Mg with fixed automorphism group consists of finitely
many components; to determine their number requires mapping class group
action on generating systems. We denote by Mg(G, σ) be the sublocus in Mg

of all the genus g curves X with G ↪→ Aut(X ) and signature σ.

Problem 12 Describe the loci Mg(G, σ) in terms of the theta nulls for any
given g, G, and σ.

Next we describe in more detail the basic definitions and what is known about
this problem.

5.1 Theta functions and Jacobians of curves

Let Hg be the Siegel upper-half space. The symplectic group Sp(2g,Z) acts
on Hg and there is in injection

Mg ↪→ Hg/SP (2g,Z) =: Ag

For any z ∈ Cg and τ ∈ Hg the Riemann’s theta function is defined as

θ(z, τ) =
∑

u∈Zg

eπi(utτu+2utz).

It is holomorphic on Cg ×Hg and satisfies

θ(z + u, τ) = θ(z, τ), θ(z + uτ, τ) = e−πi(utτu+2ztu) · θ(z, τ),

where u ∈ Zg.

Now let X be a genus g ≥ 2 algebraic curve. Choose a symplectic homology
basis for X , say

{A1, . . . Ag, B1, . . . , Bg}
such that the intersection products Ai · Aj = Bi ·Bj = 0 and Ai ·Bj = δij.

We choose a basis {wi} for the space of holomorphic 1-forms such that
∫
Ai
wj =

δij. The matrix Ω =
[∫

Bi
wj

]
is the period matrix of X and Ω ∈ Hg. The

columns of the matrix [I |Ω] form a lattice L in Cg and the Jacobian Jac (X )
of X is Jac (X ) = Cg/L. The Riemann’s theta function of X with respect
to the above basis is

θ(z,Ω) =
∑

u∈Zg

eπi(utΩu+2utz),
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Fig. 1. A symplectic basis for a genus 3 Riemann surface

and the locus
Θ := {z ∈ Cg/L : θ(z,Ω) = 0}

is called the theta divisor of X . Points of order n on Jac (X ) are called the 1
n
-

periods. In the next section we will use the half-periods and quarter-periods
to describe the locus of curves in Mg with fixed automorphism group. For any
two half-periods α, β we identify them with their images in H1(Xg,Z2), then
the Weil pairing is defined as

|α, β| = (−1)α·β

where α · β is the intersection product.

Problem 13 Let G be an automorphism group of a genus Xg curve and
Mg(G, σ) denote the locus of genus g curves with automorphism group G
of some signature σ. For g ≥ 4, describe the locus Mg(G, σ) in terms of the
vanishing theta-nulls.

5.2 On the decomposition of Jacobians of algebraic curves with automor-
phisms

Let X be a genus g algebraic curve with automorphism group G := Aut (X ).
Let H ≤ G such that H = H1,∪ . . . Ht where the subgroups Hi ≤ H satisfy
Hi ∩Hj = {1} for all i 6= j. Then,

Jac t−1(X )× Jac |H|(X/H) ∼ Jac |H1|(X/H1)× · · · Jac |Ht|(X/Ht)

The group H satisfying these conditions is called a group with partition. El-
ementary abelian p-groups, the projective linear groups PSL2(q), Frobenius
groups, dihedral groups are all groups with partition.

Let H1, . . . , Ht ≤ G be subgroups with Hi ·Hj = Hj ·Hi for all i, j ≤ t, and let
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gij denote the genus of the quotient curve X/(Hi ·Hj). Then, for n1, . . . , nt ∈ Z
the conditions ∑

ninjgij = 0,
t∑

j=1

njgij = 0,

imply the isogeny relation∏
ni>0

Jac ni(X/Hi) ∼
∏

nj<0

Jac |nj |(X/Hj)

In particular, if gij = 0 for 2 ≤ i < j ≤ t and if

g = gX/H2 + · · ·+ gX/Ht

then
Jac (X ) ∼ Jac (X/H2)× · · · × Jac (X/Ht)

The reader can check [24] for the proof of the above statements.

Problem 14 Using the structure of automorphism groups of algebraic curves
of genus g ≤ 48, determine possible decompositions of Jacobians for these
curves.

Part II: Higher dimension varieties

In this part we suggest some problems on higher dimensional varieties.

6 The degree of a rational map

Let k be a field and φ : kn → km be a rational map. It is an important problem
in algebraic geometry to determine the degree of the map phi. Let us assume
that

φ : kn → km

(x1, . . . , xn) → (f1, . . . , fm)

where f1, . . . , fm ∈ k(x1, . . . , xm). We assume that fi = pi(x)
qi(x)

and mboxdegfi =
di, for i = 1, . . . ,m. The classical way to determine the degree of such map
is as follows: pick a general point y = (y1, . . . , ym) ∈ km such that φ(x) = y.
Solve the system of equations


p1(x)− y1q1(x) = 0

. . .

. . .

pm(x)− ymqm(x) = 0
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the number of solutions of such system is bounded by Πm
i=1di. There are some

computational issues with this approach though. First, how do we make sure
that the point y ∈ km is a generic point. Second, the solution of the above
system will involve a Groebener basis argument. Such method is extremely
inefficient and will not work well for high degrees.

Problem 15 Combine the symbolic and numerical methods to design an ef-
ficient algorithm for determining the degree of a rational map.

7 Parameterizing surfaces

It is a well known fact that if an algebraic curve has genus zero than it can be
parametrizable. There are many papers on the parametrization of algebraic
curves. The algorithms on parametrization of curves are quite efficient. Fur-
thermore, there are even some results on how to find a ”good” parametrization.
There are no analogue results for higher dimensional varieties, even though
there have been some attempts for algebraic surfaces. The following problem
is important theoretically and in applications.

Problem 16 Let X be a parametric algebraic surface. Design an algorithm
which finds a parametrization of X .
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