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To my father on the occasion of his 80th birthday.

Abstract. We determine all genus 2 curves, defined over C, which have si-
multaneously degree 2 and 3 elliptic subcovers. The locus of such curves has

three irreducible 1-dimensional genus zero components in M2. For each com-
ponent we find a rational parametrization and construct the equation of the

corresponding genus 2 curve and its elliptic subcovers in terms of the param-

eterization. Such families of genus 2 curves are determined for the first time.
Furthermore, we prove that there are only finitely many genus 2 curves (up to

C-isomorphism) defined over Q, which have degree 2 and 3 elliptic subcovers

also defined over Q.

1. Introduction

If there is a degree d covering from a genus 2 curve C to an elliptic curve E then
the space Ld of such genus 2 curves is an algebraic 2-dimensional locus inM2 when
d ∼= 1 mod 2. Genus 2 curves with this property have been studied extensively in
the XIX century. In the last decade of the XX century there was renewed interests
on the topic coming from interests from number theory, cryptography, mathematical
physics, solitons, differential equations, etc. These spaces for d = 3, 5 were explicitly
computed by this author and his co-authors. For a more general setting and recent
results on such spaces see [12] and [11].

Due to some of the interesting properties of such genus 2 curves they have found
applications in cryptography, factoring of large numbers, etc. There is always an
interest in having genus 2 curves defined over Q with many elliptic subcovers. In
[6] such genus two curves were used for factorization of large numbers. Although
the arithmetic of C is more complicated than on an elliptic curve, the author shows
that this is balanced by the fact that each computation on C essentially corresponds
to a pair of computations carried out on the two elliptic curves E1 and E2.

In this paper we give a family of genus 2 curves which have 4 elliptic subcovers
such that two of them are of degree 2 and the other two of degree 3. We determine
such elliptic subcovers and the corresponding covers explicitly. Let p = [C] denote
the isomorphism class of a genus 2 curve, over C, such that p ∈ L2∩L3. We denote
its degree 2 (resp. 3) elliptic subcovers by E1, E2 (resp. E3, E4). Their j-invariants
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are denoted by j1, j2, j3, j4 respectively.

C

~~vv   ((
E1 E2 E3 E4

The locus L2 ∩L3 has three irreducible 1-dimensional components inM2. Each
component is a genus 0 curve and can therefore be parametrized. Using these
parametrizations we are able construct 3 rational families of genus 2 curves and
determine their 4 elliptic subcovers. Our main result can be summarized as below:

Theorem 1 (Main Theorem). a) The locus L2 ∩ L3 of genus 2 curves which have
four elliptic subcovers, two of which are degree 2 and two of degree 3, has three
irreducible, 1-dimensional, genus zero components in M2.

b) For all t ∈ C \ {∆t = 0} there is a genus 2 curve Ct where the j-invariants
j1, j2 (resp. j3, j4) of degree 2 (resp. degree 3) of elliptic subcovers are the roots of
the quadratic j2 + c1j + c0 = 0 (resp. given below):

i) The equation of Ct is

y2 =2x6 +
(
2 t+ 12− 2 t3 + 9 t2

)
x5 − (t+ 2)

(
t2 − 2 t− 14

) (
t2 + 1

)
x4−(

t2 + 1
) (

2 t4 − 6 t3 − 31 t2 − 28 t− 37
)
x3 −

(
t3 − 10 t2 − 23 t− 28

) (
t2 + 1

)2
x2

+ 6 (t+ 2)
(
t2 + 1

)3
x+ 2

(
t2 + 1

)4
,

where ∆t = (t + 2)(2t − 11)(t2 + 1)(t − 1). The j-invariants of elliptic subcovers
are as follows,

c0 =
1

16

(
t2 − 6 t+ 4

) (
t2 + 114 t+ 124

)
(2 t− 11)2

(t2 + 1)4

c1 =
−128

(2 t− 11)5
·
(
8 t10 − 320 t9 + 5580 t8 − 55460 t7 + 344593 t6 − 1379982 t5

+3562940 t4 − 4837160 t3 + 7580400 t2 + 180256 t+ 1421824
)

j3 = 64

(
t2 + 114 t+ 124

)3
(2 t− 11)

5 , j4 = 64

(
t2 − 6 t+ 4

)3
2 t− 11

ii) The equation of Ct is

y2 =
(
2916x3t− 2916x3 − 486x2t2 + 1944x2t− 54xt4 + 216xt3 − 162xt2 + t7

−7 t6 + 15 t5 − 9 t4
) (

11664x3 + 2916x2 − 108xt3 + 324xt2 + t6 − 6 t5 + 9 t4
)

where ∆t = t(t− 1)(t2 − 2t− 2)(t− 3). The j-invariants of elliptic subcovers are
as follows,

c0 = − 1

16

(
−225 + 540 t− 396 t2 + 80 t3

)
(t− 3)6

t8 (t− 1)2

c1 =
384

(t− 1) (t− 3)9
·
(
−820125 + 4045950 t+ 3221840 t8 − 5562270 t2 − 33869934 t5

+24265899 t4 − 4786128 t3 + 25696944 t6 − 11732952 t7 − 491200 t9 + 32000 t10
)
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This family has isomorphic degree 3 elliptic subcover with j-invariants

j3 = j4 = −1728
(2 t− 5)

3

(t− 1)
3

(t− 3)
3

iii) The equation of Ct is

y2 =

(
4

(
2 t2 + 7 t+ 2

)6
x3

t2 (2 + 3 t+ 2 t2)4
+

(
2 t2 + 7 t+ 2

)6
x2

t2 (2 + 3 t+ 2 t2)4
+ 2

(
2 t2 + 7 t+ 2

)3
x

t (2 + 3 t+ 2 t2)2
+ 1

)
((

2 t2 + 7 t+ 2
)6
x3

t2 (2 + 3 t+ 2 t2)4
−
(
2 t2 + 7 t+ 2

)4 (
2 t4 + t3 − 5 t2 − 2 t− 1

)
x2

t2 (2 + 3 t+ 2 t2)3
+

(
2 t2 + 7 t+ 2

)3
x

t (2 + 3 t+ 2 t2)2
+ 1

)
where ∆t = t(2t2 +7t+2)(t−2)(t+2)(2t−1)(t+1)(2+3t+2t2). The j-invariants

of elliptic subcovers are as follows,

c0 = 1024
(t+ 2)6 t6

(
t4 + 56 t2 + 16

) (
t4 − 4 t2 + 16

)
(t− 2)2 (2 + 3 t+ 2 t2)8

c1 = − 4

t4 (t− 2)4 (t+ 2)4
·
(
4 t16 − 79 t14 + 1000 t12 + 3824 t10 + 207616 t8

+61184 t6 + 256000 t4 − 323584 t2 + 262144
)

j3 := 2

(
t4 + 120 t3 + 536 t2 + 480 t+ 16

)3
t (t− 2)

8
(t+ 2)

2 , j4 := 256

(
t4 − 4 t2 + 1

)3
t2 (t− 2) (t+ 2)

c) Every curve [C] ∈ L2 ∩ L3 is isomorphic, over C, to one of the curves in i),
ii), or iii) for some value of t ∈ C \∆t.

The rest of this paper will be proving this theorem. We will use the explicit
equation of L2 and L3. The idea of this paper is based on the following result
where the explicit equation of L3 is computed.

Theorem 2 (Shaska 2001). Let K be a genus 2 field and e3(K) the number of
Aut (K/k)-classes of elliptic subfields of K of degree 3. Then;

i) e3(K) = 0, 1, 2, or 4
ii) e3(K) ≥ 1 if and only if the classical invariants of K satisfy the irreducible

equation F (J2, J4, J6, J10) = 0 displayed in Appendix A in [16].

The equation of the second part of the theorem is called the L3 equation through-
out this paper. Its singularities were studied in [2]. The equation of L2 has been
known in different forms since the XIX century. We will use the equation of L2 as
in [17]

We use parametrizations of L2 by the s-invariants which were introduced in [17]
and have been used by many authors since. For computations in L3 we make use
of the invariants among two cubics which were introduced in [16] and seem to have
been unknown to classical invariant theorists. For a different approach of computing
L3 see [12].

After determining the locus L2 ∩ L3 in terms of absolute invariants i1, i2, i3 of
genus 2 curves we parametrize each component of this locus. The constructing the
genus 2 curves starting from the moduli point in these loci makes use of the Prop. 1
where the equation of the curve is given in terms of the s1, s2 invariants as in (14).
Such equations, known to the author since 2003, are being published for the first
time. For a method of how to determine a minimal equation of hyperelliptic curves
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over its field of definition check [3,5]. For related topics on the arithmetic of genus
2 curves check [8–10].

2. Preliminaries on genus 2 curves with split Jacobians

Curves with split Jacobians have been studied extensively before by many au-
thors. In this section we briefly set some of the notation and describe some results
that we will need in the next section.

2.1. The space L2. All our computations in this paper are based on the s-invariants
of genus 2 curves with extra involutions. Hence we will define them here and de-
scribe some basic results.

Let C be a genus 2 curve and z1 is an elliptic involution of C. Denote by
Γ = PGL(2,C). Let z2 = z1z0, where z0 is the hyperelliptic involution. Let Ei be
the fixed field of zi for i = 1, 2.

We need to determine to what extent the normalization in the above proof de-
termines the coordinate X. The condition z1(X) = −X determines the coordinate
X up to a coordinate change by some γ ∈ Γ centralizing z1. Such γ satisfies
γ(X) = mX or γ(X) = m

X , m ∈ k \{0}. Hence we can assume that the Weierstrass

points are {±α1,±α2,±α3}. If we denote the symmetric polynomials of α2
1, α

2
2, α

2
3

by a, b, c then C has equation Y 2 = X6− aX4 + bX4− c. The additional condition
abc = 1 forces 1 = −γ(α1) . . . γ(a6), hence m6 = 1. Then C is isomorphic to a
curve with equation

(1) Y 2 = X6 − aX4 + bX2 − 1,

where 27− 18ab− a2b2 + 4a3 + 4b3 6= 0.
So X is determined up to a coordinate change by the subgroup H ∼= D6 of Γ

generated by τ1 : X → ε6X, τ2 : X → 1
X , where ε6 is a primitive 6-th root of unity.

Let ε3 := ε2
6. The coordinate change by τ1 replaces a by ε3b and b by ε2

3b. The
coordinate change by τ2 switches a and b. Invariants of this action are:

s1 := ab, s2 := a3 + b3

The mapping

A : (s1, s2)→ (i1, i2, i3)

gives a birational parametrization of L2.
The ordered pair s1, s2 uniquely determines the isomorphism classes of curves in

L2.

Lemma 1. k(L2) = k(s1, s2).

The fibers of A of cardinality > 1 correspond to those curves C with |Aut (C)| >
4. The rational expressions of s1, s2 can be found in [15]

2.2. Elliptic subcovers. Let j1 and j2 denote the j-invariants of the elliptic curves
E1 and E2. The invariants j1 and j2 and are roots of the quadratic

j2 + 256
(2s3

1 − 54s2
1 + 9s1s2 − s2

2 + 27s2)

(s2
1 + 18s1 − 4s2 − 27)

j + 65536
(s2

1 + 9s1 − 3s2)

(s2
1 + 18s1 − 4s2 − 27)2

= 0,

(2)

see [17] for details.
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Theorem 3. Let p = (s̄1, s̄2) ∈ L2 there exists a genus 2 curve Cs̄1,s̄2 with equation

(3) Y 2 = a0X
6 + a1X

5 + a2X
4 + a3X

3 + t a2X
2 + t2a1X + t3a0,

where the coefficients are given by

t = s̄2
2 − 4s̄3

1

a0 = s̄2
2 + s̄2

1s̄2 − 2s̄3
1

a1 = 2(s̄2
1 + 3s̄2) · (s̄2

2 − 4s̄3
1)

a2 = (15s̄2
2 − s̄2

1s̄2 − 30s̄3
1)(s̄2

2 − 4s̄3
1)

a3 = 4(5s̄2 − s̄2
1) · (s̄2

2 − 4s̄3
1)2.

(4)

Proof. The proof can be computational. Computing the absolute invariants i1, i2, i3
we have

i1 =
9

4

s̄2
1 − 126 s̄1 + 405 + 12 s̄2

(15 + s̄1)
2

i2 =
27

8

729 s̄2
1 + s̄3

1 + 4131 s̄1 − 3645− 1404 s̄2 − 36 s̄1s̄2

(15 + s̄1)
3

i3 =
243

8192

(
−27− 4 s̄2 + 18 s̄1 + s̄2

1

)2
(15 + s̄1)

5

Using the expressions of s1, s2 in [17] in terms of i1, i2, i3 we get

(s1, s2) = (s̄1, s̄2).

This completes the proof.
�

That every genus 2 curve with automorphism group of order > 2 is defined over
its field of moduli was proved before by Cardona/Quer and independently by this
author in [15]. This expression of the curve in terms of the s-invariants is the first
one and it is beneficial because it uses the rational parametrization of the surface
L2.

We illustrate some of the ideas above with the following example.

Example 1. Let C be a genus 2 curve with equation

y2 = 3x6 +
(

10
√

3− 8
)
x5 +

(
63− 16

√
3
)
x4 +

(
60
√

3− 72
)
x3

+
(

125− 40
√

3
)
x2 +

(
46
√

3− 36
)
x+ 29

Below we display some of the information about this curve from the Maple pack-
age ”genus 2” written by the author.

Info(C,x);

"The moduli point for this curve is p=(i_1, i_2, i_3) "

[31 -125 361 ]

(i[1], i[2], i[3]) = [--, ----, -------]

[12 8 3981312]

"The Automorphism group is isomorphic to the group with GapId"

[4, 2]
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"Sh-invariants are "

(s[1], s[2]) = [3, 28]

"The field of moduli is:"

M = Q

"The minimal field of definition is:"

F = Q

"The degree of obstruction is:"

"[F : M]" = 1

"Rational model is over its minimal field of definition is:"

2 6 5 4 3

y = 491 x + 62868 x + 3615924 x + 119727712 x

2

+ 2444364624 x + 28729167168 x + 151677646016

"This curve has extra involutions. Its degree 2 elliptic subcovers

have j-invariants"

23584461610752 6750000

--------------, -------

312481 3913

"This curve has NO degree 3 elliptic subcovers"

The rational model refereed above is computed using the Eq. (14). By an appro-
priate Möbius transformation one can show that it is isomorphic over C with the
curve

y2 = 491x6 + 2418x5 + 5349x4 + 6812x3 + 5349x2 + 2418x+ 491

It can be checked that it has the same i1, i2, i3 invariants as the previous curve. In
[3] we can show that we can do better and a more ”minimal” equation.

Hence, the equation provided in (14) is not necessary a ”minimal” equation of
the curve. For a ”minimal” equation of genus 2 curves see [3].

2.3. The space L3. In [16] it was shown that every curve C in L3 can be written
as

(5) Y 2 = (X3 + aX2 + bX + 1) (4X3 + b2X2 + 2bX + 1)

and the following

(6) u = ab, v = b3

are invariants of C under any change of coordinates.
The mapping k2 \ {∆ = 0} → L3 such that

(u, v)→ (i1, i2, i3)

has degree 2. Instead the invariants of two cubics as defined in [16]

r1 = 27
v(v− 9− 2u)3

4v2 − 18uv + 27v− u2v + 4u3

r2 = −1296
v(v− 9− 2u)4

(v− 27)(4v2 − 18uv + 27v− u2v + 4u3)
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uniquely determine the isomorphism class of curves in L3. However, for the curves
in L3 the field of moduli is not necessary a field of definition. One can show that
the degree of the obstruction is ≤ 2 as proved below.

Theorem 4. k(r1, r2) = k(L3). Moreover, for every p = (r1, r2) ∈ L3 there is a
genus two curve C with equation

(7) Y 2 = (v2X3 + uvX2 + vX + 1) (4v2X3 + v2X2 + 2vX + 1),

Proof. We compute absolute invariants i1, i2, i3 in terms of u, v. Substituting them
in the equation of L3 we check that they satisfy this equation.

�
We further discuss L3. We let

R := (27v + 4v2 − u2v + 4u3 − 18uv) 6= 0.

For 4u − v − 9 6= 0 the degree 3 coverings are given by φ1(X,Y ) → (U1, V1) and
φ2(X,Y )→ (U2, V2) where

U1 =
vX2

v2X3 + uvX2 + vX + 1
, U2 =

(vX + 3)2 (v(4u− v− 9)X + 3u− v)

v (4u− v− 9)(4v2X3 + v2X2 + 2vX + 1)
,

V1 = Y
v2X3 − vX − 2

v2X3 + uvX2 + vX + 1
,

V2 = (27− v)
3
2 Y

v2(v− 4u+ 8)X3 + v(v− 4u)X2 − vX + 1

(4v2X3 + v2X2 + 2vX + 1)2

(8)

and the elliptic curves have equations:

E : V 2
1 = RU3

1 − (12u2 − 2uv− 18v)U2
1 + (12u− v)U1 − 4

E′ : V 2
2 = c3U

3
2 + c2U

2
2 + c1U2 + c0

(9)

where

c0 = −(9u− 2v− 27)3

c1 = (4u− v− 9) (729u2 + 54u2v− 972uv− 18uv2 + 189v2 + 729v+ v3)

c2 = −v (4u− v− 9)2 (54u+ uv− 27v)

c3 = v2 (4u− v− 9)3

(10)

The above facts can be deduced from Lemma 1 of [16]. The case 4u− v− 9 = 0 is
treated separately in [16].

There is an automorphism β ∈ Galk(u,v)/k(i1,i2,i3) given by

β(u) =
(v− 3u)(324u2 + 15u2v− 378uv− 4uv2 + 243v+ 72v2)

(v− 27)(4u3 + 27v− 18uv− u2v+ 4v2)

β(v) = − 4(v− 3u)3

4u3 + 27v− 18uv− u2v+ 4v2

(11)

which permutes the j-invariants of E and E′. These j invariants are given explicitly
in terms of u and v as below:

j3 = 16
v
(
216 u2 + vu2 − 126 uv + 405 v + 12 v2 − 972 u

)3
(4 u3 − vu2 − 18 uv + 4 v2 + 27 v)

2
(v− 27)

3

j4 = −256

(
u2 − 3 v

)3
v (4 u3 − vu2 − 18 uv + 4 v2 + 27 v)

(12)
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Remark 1. There are exactly two genus 2 curves (up to isomorphism) with e3(K) =
4, see 4.2 in [16]. The case e3(K) = 1 (resp., 2) occurs for a 1-dimensional (resp.,
2-dimensional) family of genus 2 curves.

The theorem below shows that if we want to search for a family of curves with
many elliptic subcovers we have to look at the curves with automorphism group
V4.

Theorem 5 (Shaska 2003). Let C be a genus two curve which has a degree 3 elliptic
subcover. Then the automorphism group of C is one of the following: Z2, V4, D8,
or D12. Moreover, there are exactly six curves C ∈ L3 with automorphism group
D8 and six curves C ∈ L3 with automorphism group D12.

The list of all curves in L3 with automorphism group > 4 is given in [15], where
their rational points are determined also.

2.4. Constructing curves from their moduli points. In our computations we
will find the intersection L2∩L3 as a sublocus inM2. Hence, we need a constructive
way to determine the equation of the curve once we know the moduli point. We
summarize all the results in the following.

Proposition 1. The following are true:

i): Let j ∈ Q. Then there exists an elliptic curve E defined over Q such that
j(E) = j. Moreover the equation of E is given by

a) If j 6= 0, 1728 then Aut (E) = Z2 and

y2 = x3 − j

48
(j − 1728)3x− j

864
(j − 1728)5

b) If j = 0 then Aut (E) = Z2 × Z3 and y2 = x3 − 1
4 .

c) If j = 1728 then Aut (E) = V4 and y2 = x3 + x.

ii): The space L2 is parametrized by the s-invariants (s1, s2), k(L2) = k(s1, s2).
Let p ∈ M2 such that p = (i1, i2, i3) ∈ Q3 and Aut (p) ∼= V4. Then there
exists a genus 2 curve C defined over Q such that p = [C]. Moreover, its
equation is

(13) Y 2 = a0X
6 + a1X

5 + a2X
4 + a3X

3 + t a2X
2 + t2a1X + t3a0

where the coefficients are given by

t = s2
2 − 4s3

1

a0 = s2
2 + s2

1s2 − 2s3
1

a1 = 2(s2
1 + 3s2) · (s2

2 − 4s3
1)

a2 = (15s2
2 − s2

1s2 − 30s3
1)(s2

2 − 4s3
1)

a3 = 4(5s2 − s2
1) · (s2

2 − 4s3
1)2

(14)

and the expressions of s1 and s2 are given in terms of i1, i2, i3 as in [15].
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iii): The space L3 is parametrized by the r1, r2-invariants as in [16], hence
k(L3) = k(r1, r1). Let p ∈ L3. Then there exists a genus 2 curve CQ such
that p = [C] with equation

(15) Y 2 = (v2X3 + uvX2 + vX + 1) (4v2X3 + v2X2 + 2vX + 1).

Proof. The first part is elementary. The proof of the part ii) can be found on [17].
The equation of the curve C given in Eq.(13) can be verified by computing the
absolute invariants of the curve and checking that they verify the equation of L2.
Since these computations are straight forward we do not display them here. For a
rational moduli point p ∈ M2(Q), the curve C is defined over Q since s1 and s2

are given as rational functions in terms of i1, i2, i3. A constructive proof of ii) and
a discussion of a minimal polynomial of C is intended in [3].

The proof of the third part iii) can be found in [16].
�

Remark 2. Invariants (s1, s2) were also called u, v in [15]. We will call them
s-invariants not to confuse them with u, v for degree 3 covers.

3. The locus L2 ∩ L3.

In order to construct genus 2 curves which have degree 2 and degree 3 elliptic
subcovers we need to determine the locus L2∩L3. This locus has three components
in M2, say

G1(i1, i2, i3) ·G2(i1, i2, i3) ·G3(i1, i2, i3) = 0.

We will show computational that each one of these components has genus zero.
Parametrizing such components we are able to express the absolute invariants
i1, i2, i3 in terms of two variables s and t for all points p = (i1, i2, i3) ∈ L2 ∩ L3.

Since for every point p ∈ L2 the field of moduli is a field of definition then there
is a curve C with equations given as rational functions of s and t as in Prop. 1,
part ii).

k2 \ {∆ 6= 0} → L3 ∩ L2 → k2 \ {∆ 6= 0}
(u, v)→ (i1, i2, i3)→ (s1, s2)

The challenge here is to check the results of [16] in order to see which ones are valid
for curves and covers over Q. We know that for any rational point p ∈ L2 ∩L3 the
field of moduli is a field of definition. In other words, there is a curve C defined
over Q.

3.1. (u, v)–space. As it can be seen from above, it is a challenge computationally
to lift from the point of moduli to the equation of the curve. Instead we start with
the curve given at Eq. (15). Such curves are in L2 if and only if u and v satisfy the
following
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(−18 u v2 + v2 u2 + 85 v2 − 2160 v+ 468 u v− 28 v u2 + 4 u3)

(8 v3 + 27 v2 − 54 u v2 − v2 u2 + 108 v u2 + 4 v u3 − 108 u3)

(3459375 v3 − 11390625 v2 − 333187 v4 + 274410 u v3 − 1215000 u v2 − 324 v6

+ 2092500 v u3 − 1503225 v2 u2 + 374040 v u4 − 781106 v2 u3 + 443087 v3 u2

− 69300 u v4 + 11168 v u5 − 10864 v2 u4 + 24624 v3 u3 − 16535 u2 v4 + 2250 u v5

+ 16929 v5 + 128 u6 + 81 v5 u2 + 54 v4 u3 − 16 v4 u4 + 320 v3 u4 + 32 v3 u5 − 1280 v2 u5) = 0

(16)

We can easily check that each component has genus 0. Hence, we can parametrize
each component. This parametrization will give the equation of the curve C and
its degree 3 elliptic subcovers E and E′. Computing such equations in each case
will occupy the rest of this paper.

First we settle some notation. For a polynomial F (x) = cnx
n + · · ·+ c1 + c0 the

coefficient vector we call the vector (c0, c1, . . . cn)t.
The parametrization methods used in some computational algebra packages as

Maple, Mathematica etc might not produce the same results. Indeed, in the third
component their parametrizations were extremely long and we were not able to
compute the equation of the genus 2 curve with such parametrizations. All our
computations can be confirmed by substituting these parametrizations in each locus
and verifying that the equation is satisfied.

3.2. First component. We start first with the component of the locus in Eq. (16),
namely

−18uv2 + v2u2 + 85v2 − 2160v + 468uv− 28vu2 + 4u3 = 0.

This is a genus zero curve which has a parametrization as follows

u = −(t+ 2)(t− 4), v = 2
(t+ 2)3

(t2 + 1)

Substituting these invariants in the expressions for s1, s2 in [15] we get

s1 =

(
4 t2 − 12 t− 5

) (
8 t2 + 72 t− 13

)
(2 t− 11)2

s2 =
2

(2 t− 11)4
·
(
128 t8 − 2560 t7 + 19776 t6 − 61248 t5 + 153600 t4

+185856 t3 − 192040 t2 − 33448 t− 8661
)

The elliptic subcovers of degree 2 are determined by Eq. (2). The j-invariants of
degree 3 elliptic subcovers are obtained by replacing for u and v in Eq. (12).

j3 = 64

(
t2 + 114 t+ 124

)3
(2 t− 11)

5 , j4 = 64

(
t2 − 6 t+ 4

)3
2 t− 11
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It is easy now to compute the equation of C, which has equation Y 2 = F (X) where
F (X) has coefficient vector

1

6 (t+2)3

t2+1

12 (t+2)6

(t2+1)2
− 2 (t+2)4(t−4)

t2+1

20 (t+2)6

(t2+1)2
+ 8 (t+2)9

(t2+1)3
− 8 (t+2)7(t−4)

(t2+1)2

48 (t+2)9

(t2+1)3
− 8 (t+2)10(t−4)

(t2+1)3

−32 (t+2)10(t−4)

(t2+1)3
+ 16 (t+2)12

(t2+1)4

64 (t+2)12

(t2+1)4


The coefficients of F (X) are obtained by simply replacing s1, s2 in Eq. (14).

This completes the proof of the Main Theorem, part b), i).

3.3. Second component. The second component

8 v3 + 27 v2 − 54 u v2 − v2 u2 + 108 v u2 + 4 v u3 − 108 u3 = 0,

of Eq. (16) is a genus zero curve. We find a parametrization of this curve as follows

u = 9
t− 4

t (t− 3) (t− 1)
, v = −54

1

t2 (t− 3)

Substituting these expressions into s1, s2 we get

s1 = −3
−243 + 324 t+ 318 t2 − 540 t3 + 125 t4

(t− 3)4

s2 =
6

(t− 3)8
(
59049− 157464 t+ 8748 t2 + 320760 t3 − 305802 t4

+7128 t5 + 114540 t6 − 54200 t7 + 7625 t8
)

The elliptic subcovers of degree 2 are determined by Eq. (2). The j-invariants of
degree 3 elliptic subcovers are obtained by replacing for u and v in Eq. (12). Then E
and E′ are isomorphic to each other and that is not very interesting to us, since we
are looking for families with as many as possible elliptic subcovers. The j-invariant
of such curves are

j1 = j2 = −1728
(2 t− 5)

3

(t− 1)
3

(t− 3)
3

The genus 2 curve has equation

y2 = (2916 tx3 − 2916x3 − 486 t2x2 + 1944 tx2 − 54 t4x+ 216 t3x− 162 t2x

+ t7 − 7 t6 + 15 t5 − 9 t4) (11664x3 + 2916x2 − 108 t3x+ 324 t2x+ t6

− 6 t5 + 9 t4)

This completes the proof of the Main Theorem, part b), ii).
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3.4. Third component. Next we consider the third component of the locus in
Eq. (16). We get a parametrization

u = −
(
2 t2 + 7 t+ 2

) (
2 t4 + t3 − 5 t2 − 2 t− 1

)
t (2 + 3 t+ 2 t2)

v =

(
2 t2 + 7 t+ 2

)3
t (2 + 3 t+ 2 t2)

2

which can be verified by substituting these expressions for u and v in the corre-
sponding locus.

Then s1, s2 in terms of the parameter t are as follows

s1 =

(
t4 + 3 t3 + 2 t2 + 6 t+ 4

) (
4 t4 + 9 t3 + 26 t2 + 12 t− 8

)
t3 (t− 2) (t+ 2)3

s2 =
1

4 t5 (t− 2)2 (t+ 2)5
· (16 t14 + 208 t13 + 896 t12 + 2940 t11 + 7785 t10

+ 16926 t9 + 22832 t8 + 18272 t7 − 4640 t6 − 42816 t5 − 50688 t4 − 35328 t3

− 30464 t2 − 18944 t− 4096)

The j-invariants of the degree 3 elliptic subcovers are

E : j1 = 2

(
t4 + 120 t3 + 536 t2 + 480 t+ 16

)3
t (t− 2)

8
(t+ 2)

2

E′ : j2 = 256

(
t4 − 4 t2 + 1

)3
t2 (t− 2) (t+ 2)

Now we can compute the equation of C via Eq. (14) and we get Y 2 = F (X)
where F (X) has coefficient vector

1

3
(2 t2+7 t+2)

3

t(2+3 t+2 t2)2

3
(2 t2+7 t+2)

6

t2(2+3 t+2 t2)4
− (2 t2+7 t+2)

4
(2 t4+t3−5 t2−2 t−1)

t2(2+3 t+2 t2)3

5
(2 t2+7 t+2)

6

t2(2+3 t+2 t2)4
+

(2 t2+7 t+2)
9

t3(2+3 t+2 t2)6
− 2

(2 t2+7 t+2)
7
(2 t4+t3−5 t2−2 t−1)

t3(2+3 t+2 t2)5

6
(2 t2+7 t+2)

9

t3(2+3 t+2 t2)6
− (2 t2+7 t+2)

10
(2 t4+t3−5 t2−2 t−1)

t4(2+3 t+2 t2)7

−4
(2 t2+7 t+2)

10
(2 t4+t3−5 t2−2 t−1)

t4(2+3 t+2 t2)7
+

(2 t2+7 t+2)
12

t4(2+3 t+2 t2)8

4
(2 t2+7 t+2)

12

t4(2+3 t+2 t2)8


The reader can easily verify that this equation of the genus 2 curve is the same

with that claimed in the Main Theorem. This completes the proof of the Main
Theorem, part b), i).

Proof of the Main theorem: Combining computations for each component we
have the results of Thm. 1.

�
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Given any genus 2 curve C over the complex numbers, we can check if it has
degree 2 and degree 3 elliptic subcovers. Computationally this is possible from our
genus2 Maple package. Below we illustrate with an example.

Example 2. Let C be a genus 2 curve with equation

y2 = 8x6 + 187x4 − 1355x2 − 1088x3 + 3993x− 3x5 + 2730

In the genus2 package we enter only the polynomial f(x), The output from the
package is:

Info( f, x);

"Initial equation of the curve"

2 6 4 2 3 5

y = 8 x + 187 x - 1355 x - 1088 x + 3993 x - 3 x + 2730

"Igusa invariants are [J_2, J_4, J_6, J_10]"

[5435864, 11848141844056, -15448925968029277668, -954225510546747438407778509664]

"Clebcsh invariants are [A, B, C, D]"

[-679483 11104643929484 -1875304637846687089 3694376275475287252631213749681232]

[-------, --------------, --------------------, ----------------------------------]

[ 15 5625 15625 7119140625 ]

"The moduli point for this curve is p=(i_1, i_2, i_3) "

[4624326 -54010420569 -90812685325761]

(i[1], i[2], i[3]) = [-------, ------------, ---------------]

[ 80089 45330374 929398866761216]

"The Automorphism group is isomorphic to the group with GapId"

[4, 2]

"Sh-invariants are "

[-688 -117101]

(s[1], s[2]) = [----, -------]

[ 27 972 ]

"The degree 2 j-invariants are roots of the quadratic"

"The field of moduli is:"

M = Q

"The minimal field of definition is:"

F = Q

"The degree of obstruction is:"

"[F : M]" = 1

"Rational model is over its minimal field of definition is:"

"A minimal rational model is over its minimal field of definition is:"

y^2 = -73190944927004215253422952448x^6+111056747323558270032344844748800x^5

+152821713034110852986785299725241600x^4-77928924518649965576021241379266720000x^3

+12331972128546830355070565201074691490000x^2

+723169150606597090269353486513192776125000x

-38459157573904353552637009599366812535828125

"with moduli point"

[4624326 -54010420569 -90812685325761]

[-------, ------------, ---------------]

[ 80089 45330374 929398866761216]

"This curve has degree 3 elliptic subcovers."

The equation obtained above is obviously not the ’best’ equation possible. Since
the algorithms computes the corresponding moduli point, then it losses any infor-
mation about the initial equation of the curve. How can the package get the best
possible equation? This is studied in detail in [3, 4] for all algebraic curves. Notice
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that from methods of [3] we get that the above curve is isomorphic (over C) to the
curve

y2 = 2x6 + 15x5 + 19x4 + 19x2 + 15x+ 2

Such equation has minimal height in the sense of [4] and therefore it is the ’best’
possible equation that we can get.

Remark 3. Most of the tasks performed from the genus2 package can be generalized
to higher genus curves using results in [1] and assuming that some equation of the
curve is known. For a discussion of how to get equations of superelliptic curves see
[13, 14] and for non-superelliptic curves see [7].

Theorem 6. There are only finitely many genus 2 curves (up to isomorphism)
defined over Q such that they have degree 2 and degree 3 elliptic subcovers also
defined over Q.

Proof. Given a genus two curve C in the locus L2 ∩ L3, it is defined over Q is and
only if the moduli point p = (i1, i2, i3) is a rational point.

Let p = (i1, i2, i3) ∈ L2 ∩ L3. Then, this p is in one of the components from
Thm. 1. Since the corresponding s-invariants are defined as rational functions in
terms of i1, i2, i3, then s1, s2 ∈ Q. Moreover, C is defined over Q if and only if
s1, s2 ∈ Q.

The invariants j1, j2 are rational numbers if

g(s1, s2) := −2916 s1
2s2 − 864 s1

3s2 + 486 s1s2
2 + 189 s2

2s1
2 + 2916 s1

4 − 216 s1
5

− 54 s2
3 + 729 s2

2 + 36 s1
4s2 − 4 s1

3s2
2 − 18 s1s2

3 + 4 s1
6 + s2

4 − 4 s1
2

− 36 s1 + 12 s2

is a complete square in Q, where g(s1, s2) is the discriminant of the quadratic in 1.
This expression is a complete square in Q if and only if the the curve

z2 = g(s1, s2)

has rational points. The curve z2 = g(s1, s2) has genus 13, 13, 23 when p is in the
locus G1, G2, G3 respectively. From Falting’s theorem, it has only finitely many
rational points. This completes the proof.

�

References

[1] L. Bedratyuk, A note about invariants of algebraic curves, Albanian J. Math. 6 (2012), no. 1,
3–8. MR2965665

[2] L. Beshaj, Singular locus on the space of genus 2 curves with decomposable Jacobians, Alba-

nian J. Math. 4 (2010), no. 4, 147–160. MR2755393 (2012b:14054)
[3] , Reduction of binary forms (L. Beshaj, T. Shaska, and E. Zhupa, eds.), NATO Sci.

Peace Secur. Ser. D Inf. Commun. Secur., IOS Press, Amsterdam, 2015.

[4] L. Beshaj and T. Shaska, Heights on algebraic curves (L. Beshaj, T. Shaska, and E.
Zhupa, eds.), NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., IOS, Amsterdam, 2015.

[5] L. Beshaj and F. Thompson, Equations for superelliptic curves over their minimal field of

definition, Albanian J. Math. 8 (2014), no. 1, 3–8. MR3253208
[6] R. Cosset, Factorization with genus 2 curves, Math. Comp. 79 (2010), no. 270, 1191–1208.

MR2600562 (2011d:11289)
[7] A. Deopurkar, M. Fedorchuk, and D. Swinarski, Gröbner techniques and ribbons, Albanian
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