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ABSTRACT. The theory of elliptic and hyperelliptic curves has been of crucial impor-
tance in the development of algebraic geometry. Almost all fundamental ideas were first
obtained and generalized from computations and constructions carried out for elliptic or
hyperelliptic curves.

In this long survey, we show that this theory can be extended naturally to all superel-
liptic curves. We focus on automorphism groups, stratification of the moduli spaceMg ,
binary forms, invariants of curves, weighted projective spaces, minimal models for superel-
liptic curves, field of moduli versus field of definition, theta functions, Jacobian varieties,
addition law in the Jacobian, isogenies among Jacobians, etc. Many recent developments
on the theory of superelliptic curves are provided as well as many open problems.
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1. INTRODUCTION

The theory of elliptic and hyperelliptic curves has been of crucial importance in the
development of algebraic geometry. Almost all fundamental ideas were first obtained and
generalized from computations and constructions carried out for elliptic or hyperelliptic
curves. Examples are elliptic or hyperelliptic integrals, theta functions, Thomae’s formula,
the concept of Jacobians, etc. Some of the classical literature on the subject [80, 82–84] as
well as the seminal work of Jacobi focus almost entirely on hyperelliptic curves.

So what is so special about a hyperelliptic curve? To begin with, a generic curve in
the hyperelliptic locus admits a cyclic Galois cover to the projective line. This cover,
which is called the hyperelliptic projection is of degree n = 2 and its branch points
determine the curve in question (up to isomorphism). Hence, studying hyperelliptic curves
over algebraically closed fields amounts to studying degree two coverings of the projective
line.

A natural generalization of the above is to study degree n ≥ 2 cyclic Galois covers.
This means that for a curve C with automorphism group Aut(C) there is a cyclic sub-
group H = 〈τ〉 normal in Aut(C) such that the quotient C/H is isomorphic to P1. Such
curves C are called superelliptic curves. The automorphism τ is called the superelliptic
automorphism of C.

The goal of this paper is to focus on the natural generalization of the theory of hyperel-
liptic curves to superelliptic curves, to highlight the theories that can be extended and all
the open problems that come with this generalization. It is a long survey on results of the
last two decades of both authors, their collaborators, and other researchers.

There are similarities among superelliptic and hyperelliptic curves, but also differences.
The obvious similarities are that such curves have affine equations (over an algebraically
closed field of characteristic relatively prime to n) of the form yn = f(x), the list of
full automorphism groups of such curves can be determined, in most cases their equations
can be determined over their field of moduli, and most importantly the full machinery
of classical invariant theory of binary forms can be used to determine their isomorphism
classes. It is such theory that makes the study of the moduli space of such curves much
more concrete than for general curves. More importantly the invariant theory connects the
theory of superelliptic curves to the weighted projective spaces.

In Section 2 we give some basic generalities of algebraic curves and their function fields.
Most of the material is basic and it can be found in most of the classic books on the subject;
see [106], [80]. Throughout most of this paper we will assume that our curves are smooth,
irreducible, defined over an algebraically closed field k of characteristic p ≥ 0. Certain
restrictions on the field of definition k or the characteristic p will be assumed on certain
sections.

In Section 3 we focus on Weierstrass points. Weierstrass points are an important tool
in studying the automorphisms groups of curves. For hyperelliptic curves with equation
y2 = f(x), the projection of Weierstrass points are exactly the roots of f(x). In Section 5
we will show that such roots are also Weierstrass points of superelliptic curves.

In Section 4 we focus on full automorphism groups of curves. The theory of auto-
morphisms is especially important for superelliptic curves since the very motivation of
superelliptic curves comes from the existence the superelliptic automorphism. The auto-
morphism groups of all superelliptic curves over any characteristic are fully classified. We
give complete list of these groups based on results from [92].

In Section 5 we introduce superelliptic curves, which are a generalization of hyperel-
liptic curves. Such curves have a degree n ≥ 2, cyclic Galois covering π : Cg → P1.
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We denote the branched points of this cover by the roots of some polynomial f(x) and
show that the curve has equation yn = f(x). We determine the list of possible full auto-
morphism group of a superelliptic curve Cg of genus g ≥ 2. Furthermore, we study the
Weierstrass points of superelliptic curves and show that they are projected to the roots of
f(x) as in the hyperelliptic case.

In Section 6 we study the loci of superelliptic curves in the moduli space. We briefly
introduce the moduli space of curves Mg0,r and its Deligne-Mumford compactification
Mg0,r. Then we focus on points of theMg0,r which correspond to curves with automor-
phisms. We discuss the inclusions between such loci and give the complete stratification
of the moduli space for genii g = 3, 4.

In Section 7 is considered the following problem: for a group G which occurs as an
automorphism group of a genus g ≥ 2 algebraic curve C, determine an equation of C. We
discuss in detail how this is accomplished for superelliptic curves.

In Section 8 are given the preliminaries of classical invariant theory of binary forms and
in Section 9 it is shown how such invariants describe a point in the weighted moduli space
Wn
ω (k). It is shown that this is a much more convenient approach to study superelliptic

curves. Weighted greatest common divisor and weighted height are introduced in Section 9
in order to study the arithmetic properties ofWn

ω (k); see [12] for further details.
In Section 10 we study minimal models of superelliptic curves when a moduli point

is given. This is well known, due to work of Tate, for elliptic curves and Liu for genus
two. We describe briefly Tate’s algorithm. For superelliptic curves we we say that a curve
has minimal model when it has a minimal moduli point as in [47]. We give necessary and
sufficient condition on the set of invariants of the curve that the curve has a minimal model.
Moreover an algorithm is provided how to find such minimal model. In Section 11 is
discussed when the field of moduli is a minimal field of definition for superelliptic curves.

Theta functions of superelliptic curves are discussed in Section 12. We give a quick
review of the theory of theta functions including the Thomae’s formula for hyperelliptic
curves. It is a natural question to generalize such results for cyclic or superelliptic curves.
To further investigate such interesting topic one should continue with [31].

In Section 13 we study Jacobian varieties and briefly describe Mumford’s representation
of divisors and Cantor’s algorithm for addition of points on a hyperelliptic Jacobian; see
[32] for how this fact is used on hyperelliptic curve cryptography. Whether this algorithm
can be generalized to all superelliptic Jacobians is the main focus of Section 13.

In Section 14 we study the Jacobian varieties with complex multiplication. Most of
the efforts here have been on determining which curves with many automorphisms have
complex multiplication. Hyperelliptic Jacobians with many automorphisms which have
complex multiplication have been determined (see [79]). We list all superelliptic curves
with many automorphisms. From such list the ones with complex multiplication are deter-
mined in [87].

While this paper is for the most part a survey, it also includes many new results and
recent developments. It lays out a general approach of using cyclic coverings in the study
of algebraic curves. One can attempt to further generalize the theory to more general
coverings. The beginnings of this program start with [75]. Most of the data for the list of
groups, inclusion among the loci were obtained by K. Magaard. We dedicate this paper to
his memory.

Acknowledgments: Authors want to thank Mike Fried for helpful suggestions and con-
versations during the process that this paper was written.
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Part 1. Curves and hyperelliptic curves

2. ALGEBRAIC CURVES AND THEIR FUNCTION FIELDS

We assume that the reader is familiar with the basic definitions of field extensions. This
section is intended to establish the notation used throughout the rest of the paper, rather
than as a comprehensive introduction to algebraic curves. Throughout k is a perfect field.
For more details, the reader is encouraged to consult [106] or [32] among other places. Let
us establish some notation and basic facts about algebraic curves and their function fields.

2.1. Algebraic curves. The following definitions are easily extended to any algebraic va-
riety, but we will focus on the curve case. Let k be a perfect field and C an algebraic curve
defined over k. Then there is a homogeneous ideal IC ⊂ k[X0, X1, . . . , Xn] defining C,
and the curve C is irreducible if and only if IC is a prime ideal in k[X0, X1, . . . , Xn]. The
(homogenous) coordinate ring of C is Γh(C) := k[X0, X1, . . . , Xn]/IC , which is an inte-
gral domain. The function field of C is the quotient field of Γh(C) and denoted by k(C).
Since C is an algebraic variety of dimension one, the field k(C) is an algebraic function
field of one variable.

Let P = (a0, a1, . . . , an) ∈ C. The ring

OP (C) = {f ∈ k(C) | f is defined at P} ⊂ k(C)

is a local ring with maximal ideal

MP (C) = {f ∈ OP (C) | f(P ) = 0}.

The point P ∈ C is a non-singular point if the local ring OP (C) is a discrete valuation
ring. There is a 1-1 correspondence between points P ∈ C and the places of k(C)/k, given
by P 7→ MP (C). This correspondence makes it possible to translate definitions from
algebraic function fields to algebraic curves and vice-versa.

2.2. Algebraic extensions of function fields. An algebraic function field F/k of one vari-
able over k is a finite algebraic extension of k(x) for some x ∈ F which is transcendental
over k. A place p of the function field F/k is the maximal ideal for some valuation ring
O of F/k. We will denote by PF the set of all places of F/k. Equivalently ΣC(k) will
denote the set of k-points of C.

An algebraic function field F ′/k′ is called an algebraic extension of F/k if F ′ is an
algebraic extension of F and k ⊂ k′.

A place p′ ∈ PF ′ is said to lie over p ∈ PF if p ⊂ p′. We write p′|p. In this case
there exists an integer e ≥ 1 such that vp′(x) = e · vp(x), for all x ∈ F . This integer is
denoted by e(p′|p) := e and is called the ramification index of p′ over p. We say that p′|p
is ramified when e(p′|p) > 1 and otherwise unramified.

For any place p ∈ PF denote by Fp := O/p. The integer f(p′|p) := [F ′p′ : Fp] is called
the relative degree of p′|p.

Theorem 1. Let F ′/k′ be a finite extension of F/k and p a place of F/k. Let p1, . . . , pm
be all the places in F ′/k′ lying over p and ei := e(pi|p) and fi := f(pi|p) the relative
degree of pi|p. Then

m∑
i=1

eifi = [F ′ : F ].

For a place p ∈ PF let O′p be the integral closure of Op in F ′. The complementary
module over Op is given by t · O′p. Then for p′|p we define the different exponent of p′
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over p as
d(p′|p) := −vp′(t).

The different exponent d(p′|p) is well-defined and d(p′|p) ≥ 0. Moreover, we have
d(p′|p) = 0 for almost all p ∈ PF . The different divisor is defined as

Diff(F ′/F ) :=
∑
p∈PF

∑
p′|p

d(p′|p) · p′.

The following well-known formula for ramified coverings between Riemann surfaces of
genus g′ and g, respectively, can now be generalized to function fields as follows.

Theorem 2. Let F/k be an algebraic function field of genus g and F ′/F a finite separable
extension. Let k′ denote the constant field of F ′ and g′ the genus of F ′/k′. Then,

(1) 2(g′ − 1) =
[F ′ : F ]

[k′ : k]
(2g − 2) + deg Diff(F ′/F )

For a proof see [106, Thm. 3.4.13]. A special case of the above is the following:

Corollary 1. Let F/k be a function field of genus g and x ∈ F \ k such that F/k(x) is
separable. Then,

2g − 2 = −2[F : k(x)] + deg Diff(F/k(x))

The ramification index and the different exponent are closely related, as made precise
by the Dedekind theorem.

Theorem 3 (Dedekind Different Theorem). For all p′|p we have:
i) d(p′| p) ≥ e(p′|p)− 1.
ii) d(p′| p) = e(p′|p)− 1 if and only if e(p′|p) is not divisible by the char k.

An extension p′|p is said to be tamely ramified if e(p′|p) > 1 and char k does not divide
e(p′|p). If e(p′|p) > 1 and char k does divide e(p′|p) we say that p′|p is wildly ramified.

The extension F ′/F is called ramified if there is at least one place p ∈ PF which is
ramified in F ′/F . The extension F ′/F is called tame if there is no place p ∈ PF which is
wildly ramified in F ′/F .

Lemma 1. Let F ′/F be a finite separable extension of algebraic function fields. Then
a) p′|p is ramified if and only if p′ ≤ Diff(F ′/F ). Moreover, if p′/p is ramified then:

i) d(p′|p) = e(p′|p)− 1 if and only if p′|p is tamely ramified
ii) d(p′|p) > e(p′|p)− 1 if and only if p′|p is wildly ramified

b) Almost all places p ∈ PF are unramified in F ′/F .

From now on we will use the term "curve" and its function field interchangeably, de-
pending on the context. It is more convenient to talk about function fields than curves in
most cases.

2.3. Divisors and the Riemann-Roch theorem. For a given curve C defined over k, we
call a divisor D the formal finite sum

D =
∑

p∈ΣC(k)

zp P.

The set of all divisors of C is denoted by DivC(k). Moreover, the divisor (f) of a function
f ∈ k(C), defined as the finite linear combination of the set of all zeroes and poles of
f , is called a principal divisor. Since (fg) = (f) + (g), the set of principal divisors
is a subgroup of the group of divisors. Two divisors that differ by a principal divisor are
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called linearly equivalent. The symbol deg(D) denotes the degree of the divisor D, i.e.,
the sum of the coefficients occurring in D. It can be shown that the divisor of a global
meromorphic function always has degree 0, so the degree of the divisor depends only on
the linear equivalence class. The Picard group PicC(k) is the group of divisors modulo
linear equivalence.

2.3.1. Riemann-Roch Spaces. Define a partial ordering of elements in DivC(k) as follows;
D is effective (D ≥ 0) if zp ≥ 0 for every p, andD1 ≥ D2 ifD1−D2 ≥ 0. The Riemann-
Roch space associated to D is

L(D) = {f ∈ k(C) with (f) ≥ −D} ∪ {0}.
Thus, the elements x ∈ L(D) are defined by the property that wp(x) ≥ −zp for all
p ∈ ΣC(k). L(D) is a vector space over k and can be interpreted as the space of functions
f ∈ k(C) whose poles are bounded by D, and is often denoted by OC [D]. It has positive
dimension if and only if there is a function f ∈ k(C) with D + (f) ≥ 0, or equivalently,
D ∼ D1 with D1 ≥ 0.

Here are some facts: L(0) = k, and if deg(D) < 0 then L(D) = {0}. If deg(D) = 0
then either D is a principal divisor or L(D) = {0}.

Proposition 1. Let D = D1 −D2 with Di ≥ 0 for i = 1, 2. Then

dim(L(D)) ≤ deg(D1) + 1.

We also remark that forD ∼ D′ we have L(D) ∼ L(D′). In particular L(D) is a finite-
dimensional k-vector space. We follow traditional conventions and denote the dimension
of L(D) by

(2) `(D) := dimk(L(D)).

Computing `(D) is a fundamental problem which is solved by the Riemann-Roch Theo-
rem. A first estimate is a generalization of the proposition above.

Lemma 2. For all divisors D we have the inequality

`(D) ≤ deg(D) + 1.

For a proof one can assume that `(D) > 0 and so D ∼ D′ > 0.

Theorem 4 (Riemann’s inequality). For given curve C there is a minimal number gC ∈
N ∪ {0} such that for all D ∈ DivC we have

`(D) ≥ deg(D) + 1− gC .

For a proof see [106, Proposition 1.4.14]. Therefore,

gC = max{degD − `(D) + 1; D ∈ DivC(k)}
exists and is a non-negative integer independent of D. The integer gC is called the genus
of C. The genus does not change under constant field extensions because we have assumed
that k is perfect. This is not correct in general if the constant field of C has inseparable
algebraic extensions. There is a corollary of the theorem.

Corollary 2. There is a number nC such that for all D with deg(D) > nC we get equality
`(D) = deg(D) + 1− gC .

Thm. 4 together with its corollary is the "Riemann part" of the Riemann-Roch theorem
for curves. To determine nC one needs more information about the inequality for small
degrees and the concept of a canonical divisor.
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2.3.2. Canonical Divisors. Let k(C) be the function field of a curve C defined over k.
To every f ∈ k(C) we attach a symbol df , the differential of f . The k(C)-vector space
Ω(k(C)) is the vector space generated by symbols df modulo the following relations:

For f, g ∈ k(C) and λ ∈ k we have:
i) d(λf + g) = λdf + dg

ii) d(f · g) = fdg + gdf .
The relation between derivations and differentials is given by the

Definition 1 (Chain rule). Let x be as above and f ∈ k(C). Then df = (∂f/∂x)dx.

The k(C)-vector space of differentials Ω(k(C)) has dimension 1 and is generated by dx
for any x ∈ k(C) for which k(C)/k(x) is finite and separable. The space Ω(k(C)) is also
called the vector space of global meromorphic one-forms on C.

We use a well known fact from the theory of function fields F in one variable: Let p
be a place of F , i.e. an equivalence class of discrete rank one valuations of F trivial on k.
Then, there exist a function tp ∈ F with wp(tP) = 1 and F/k(tp) separable.

We apply this fact to F = k(C). For all p ∈ ΣC(k) we choose a function tp as above.
For a differential 0 6= ω ∈ Ω(k(C)) we obtain ω = fp · dtp. The divisor (ω) of a global
meromorphic one-form is given by

(ω) :=
∑
p∈Σp

wp(fp) · p ,

and is a called a canonical divisor. The coefficient function of ω is transformed by the
chain rule, but two coefficient functions, before and after applying the chain rule, always
define the same divisor locally. Therefore, we can define the divisor of ω by using the
coefficient function in any local expression for ω. Moreover, for any function f ∈ k(C) we
have (fω) = (f) + (ω), and for any two non-zero differentials ω1 and ω2, there is always
a function f ∈ k(C) such that ω1 = fω2, so that the two canonical divisors (ω1) and (ω2)
are linearly equivalent. Therefore, the linear equivalence class of canonical divisors is
well-defined; this is called called the canonical class of C, and denoted by KC ∈ PicC(k).

We are now ready to state the Riemann-Roch Theorem.

Theorem 5. Let K be a canonical divisor of C. For all D ∈ DivC(k) we have

`(D) = deg(D) + 1− gC + `(K −D).

A differential ω is holomorphic if (ω) is an effective divisor. The set of holomorphic
differentials is a k-vector space denoted by Ω1

C . If K = (ω) is a canonical divisor, and
f ∈ L(K) is a function with poles bounded by K, then fω is holomorphic. This gives an
isomorphism between L(K) = OC [K] and Ω1

C . If we take D = 0 respectively D = K in
the theorem of Riemann-Roch we get the following:

Corollary 3. Ω1
C is a gC-dimensional k-vector space and deg (K) = 2gC − 2.

There are two further important consequences of the Riemann-Roch theorem.

Corollary 4. The following are true:
(1) If deg(D) > 2gC − 2 then `(D) = deg(D) + 1− gC .
(2) In every divisor class of degree g there is a positive divisor.

Proof. Take D with deg(D) ≥ 2gC − 1. Then deg(W −D) ≤ −1 and therefore `(W −
D) = 0. Take D with deg(D) = gC . Then `(D) = 1 + `(W −D) ≥ 1 and so there is a
positive divisor in the class of D. �
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3. WEIERSTRASS POINTS

The material of this section can be found in every book on the subject. We mostly refer
to [7, 30, 102, 104].

3.1. Weierstrass points via linear systems. Let D be a divisor on Cg . The complete
linear system of D, denoted |D|, is the set of all effective divisors E ≥ 0 that are linearly
equivalent to D; that is,

|D| = {E ∈ DivC(k) : E = D + (f) for some f ∈ L(D)}.

Note that any function f ∈ k(C) satisfying this definition will necessarily be in L(D)
because E ≥ 0. A complete linear system has a natural projective space structure which
we denote P(L(D)). Now, consider the projectivization P(L(D)) and the function

S : P(L(D))→ |D| ,

which takes the span of a function f ∈ L(D) and maps it to D + (f).
A (general) linear system is a subset Q of a complete linear system |D| which cor-

responds to a linear subspace of P(L(D)). The dimension of a general linear system is
its dimension as a projective vector space. Let Q ⊆ |D| be a nonempty linear system on
Cg with corresponding vector subspace V ⊆ L(D), and let P ∈ Cg . For any integer n,
consider the vector space V (−nP ) := V ∩L(D−nP ), which consists of those functions
in L(D) with order of vanishing at least n at P . This leads to a chain of nested subspaces

V (−(n− 1)P ) ⊇ V (−nP )

for all n ∈ Z. Since L(D − nP ) = {0} for n ≥ deg (D), this chain eventually terminates
and becomes {0}. As in Prop. 3, which appears later, the dimension drops by at most 1 in
each step. We define gap numbers as follows.

Definition 1. An integer n ≥ 1 is a gap number for Q at P if

V (−nP ) = V (−(n− 1)P )− 1.

The set of gap numbers for Q at P is denoted GP (Q).

Let Q(−nP ) denote the linear system corresponding to the vector space V (−nP ).
Then Q(−nP ) consists of divisors D ∈ Q with D ≥ nP . An integer n ≥ 1 is a gap
number for Q at P if and only if

dimQ(−nP ) = dimQ(−(n− 1)P )− 1.

A linear system Q is denoted by grd if dimQ = r and deg Q = d. For such a system, the
sequence of gap numbers is a subset consisting of r + 1 elements of {1, 2, . . . , d + 1}. If
this sequence is anything other than {1, 2, . . . , r+1}, we call P an inflection point for the
linear systemQ. The terms linear system and linear series are completely interchangeable.

Suppose the sequence of gap numbers is {n1, n2, . . . , nr+1}, written in increasing or-
der. For each ni, one can choose an element fi ∈ Q(−(ni − 1)P ) \Q(−niP ). Then, the
vanishing order at P is

ordP (fi) = ni − 1− ordP (D),

and because of the different orders of vanishing at P , these functions are linearly indepen-
dent, so {f1, f2, . . . , fr+1} is a basis for V . Such a basis is called an inflectionary basis
for V with respect to P .

Conversely, given a basis for V , a change of coordinates can produce an inflectionary
basis and hence construct the sequence of gap numbers. Fix a local coordinate z centered
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at P , and suppose {h1, h2, . . . , hr+1} is any basis for V . Set gi = zordP (D)hi for each i.
Then, the functions gi are holomorphic at P and thus have Taylor expansions

gi(z) = gi(0) + g′i(0)z +
g

(2)
i (0)

2!
z2 + · · ·+ g

(r)
i (0)

r!
zr + · · · .

We want to find linear combinations

Gj(z) =

r+1∑
i=1

ci,jgi(z)

of these functions to produce orders of vanishing from 0 to r at P . This is possible precisely
when the matrix 

g1(0) g′1(0) g
(2)
1 (0) · · · g

(r)
1 (0)

g2(0) g′2(0) g
(2)
2 (0) · · · g

(r)
2 (0)

...
...

...
. . .

...
gr+1(0) g′r+1(0) g

(2)
r+1(0) · · · g

(r)
r+1(0)


is invertible. When that occurs, the same constants ci,j can be used to let fj =

∑
i ci,jhi

and produce an inflectionary basis {fj} of V such that ordP (fj) = j − 1 − ordP (D).
Thus, GP (Q) = {1, 2, . . . , r + 1} and so P is an inflection point for Q.

Definition 2. The Wronskian of a set of functions {g1, g2, . . . , gr} of a variable z is the
function

W (g1, g2, . . . , gr) =

∣∣∣∣∣∣∣∣∣∣
g1(z) g′1(z) g

(2)
1 (z) · · · g

(r)
1 (z)

g2(z) g′2(z) g
(2)
2 (z) · · · g

(r)
2 (z)

...
...

...
. . .

...
gr+1(z) g′r+1(z) g

(2)
r+1(z) · · · g

(r)
r+1(z)

∣∣∣∣∣∣∣∣∣∣
.

As with its use in differential equations, the Wronskian is identically zero if and only if
the functions g1, . . . , gr are linearly dependent. We summarize with the following.

Lemma 3. Let Cg be a curve with a divisor D and Q a linear system corresponding to
a subspace V ⊆ L(D). Let {f1, . . . , fr+1} be a basis for V , and for each i, let gi =
zordP (D)fi. Let P be a point with local coordinate z. Then P is an inflection point for Q
if and only if W (g1, . . . , gr+1) = 0 at P .

Corollary 5. For a fixed linear system Q, there are finitely many inflection points.

Proof. See [77, Lemma 4.4, Corollary 4.5]. �

Definition 3. A meromorphic n-fold differential in the coordinate z on an open set V ⊆ C
is an expression µ of the form µ = f(z)(dz)n where f is a meromorphic function on V .

Suppose ω1, . . . , ωm are meromorphic 1-fold differentials in z where ωi = fi(z)dz for
each i. Then their product is defined locally as the meromorphic m-form f1 · · · fm(dz)m.
With this, we consider the Wronskian.

Lemma 4. Let Cg be an algebraic curve with meromorphic functions g1, . . . , gm. Then
W (g1, . . . , gm)(dz)m(m−1)/2 defines a meromorphic m(m− 1)/2-fold differential on Cg .
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Proof. Since each gi is meromorphic, the Wronskian is as well, and so this is clearly a
meromorphic m(m − 1)/2-fold differential locally. What remains to be shown is that the
local functions transform to each other under changes of coordinates; see [77, Lemma 4.9]
for details. �

From here on, letW (g1, . . . , gm) denote this global meromorphicm(m−1)/2-fold dif-
ferential. We now investigate the poles of the Wronskian. As with meromorphic functions
and meromorphic 1-forms, the order of vanishing of a meromorphic n-fold differential
f(z)(dz)n is given by

ordP (f(z)(dz)n) = ordP (f(z)).

Divisors are defined in a similar way; namely,

(µ) =
∑
P

ordP (µ)P.

With these definitions, we can consider spaces of meromorphic n-fold differentials whose
poles are bounded by D. So we let

L(n)(D) = {µ a meromorphic n-fold differential : (µ) ≥ −D},
and for n = 0 we recover the Riemann-Roch spaces encountered before, i.e., L(0)(D) =
L(D). Equivalently, for a local coordinate z, if (dz) = K, then

L(n)(D) = {f(z)(dz)n : f ∈ L(D + nK)}.

Lemma 5. Let D be a divisor on an algebraic curve Cg . Let f1, . . . , fm be meromorphic
functions in L(D). Then the meromorphic n-fold differential W (f1, . . . , fm) has poles
bounded by mD. That is,

W (f1, . . . , fm) ∈ Lm(m−1)/2(mD).

Proof. Fix a point P with local coordinate z. For each i, let gi = zordP (D)fi so that the
gi’s are holomorphic at P . Then the Wronskian W (g1, . . . , gm) is holomorphic at P as
well. Since the Wronskian is multilinear,

W (zordP (D)f1, . . . , z
ordP (D)fm) = zm·ordP (D)W (f1, . . . , fm).

Since this is holomorphic at P , we have ordP (W (f1, . . . , fm)) ≥ −mD as desired. �
Suppose {f1, . . . , fr+1} and {h1, . . . , hr+1} are two bases for a subspace V ⊆ L(D)

with corresponding linear system Q ⊆ |D|. Consider the Wronskian of each basis. Since
we have a change of basis, given by a matrix that transforms from the basis given by the
fi’s to the one given by hj’s, the Wronskian is scaled by the determinant of such a matrix
which is a scalar and thus doesn’t affect the zeroes or poles. Therefore, the Wronskian is
well-defined (up to a scalar multiple) by the linear system Q rather than the choice of a
basis. We denote this Wronskian by W (Q) and see that

W (Q) ∈ L(r(r+1)/2)((r + 1)D)

by Lem. 5.

Proposition 2. For an algebraic curve Cg of genus g with linear system Q of dimension r,

deg (W (Q)) = r(r + 1)(g − 1).

Proof. The proof follows from the fact that W (Q) is a meromorphic r(r + 1)/2-fold dif-
ferential of the form f(z)(dz)r(r+1)/2 for some local coordinate z. Since f(z) is mero-
morphic, the degree of (f(z)) is zero. And on a curve of genus g, the degree of (dz) is

2g− 2. Thus, the degree of (f(z)(dz)r(r+1)/2) is
r(r + 1)

2
(2g− 2) = r(r+ 1)g− 1. �
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We define the inflectionary weight of a point P with respect to a linear system Q to be

wP (Q) =

r+1∑
i=1

(ni − i),

where {n1, . . . , nr+1} is the sequence of gap numbers for Q at P written in ascending
order. It follows that P is an inflection point for Q precisely when wP (Q) > 0. It turns out
that the inflectionary weight of P is exactly the order of vanishing of the Wronskian at P .

Lemma 6. If GP (Q) = {n1, . . . , nr+1} and {f1, . . . , fr+1} is a basis for V , then

wP (Q) = ordP (W (zordP (D)f1, . . . , z
ordP (D)fr+1)).

Proof. See [77, Lemma 4.14]. �

Theorem 6. For Cg an algebraic curve of genus g withQ a grd on Cg , the total inflectionary
weight on Cg is ∑

P∈Cg

wP (Q) = (r + 1)(d+ rg − r).

The canonical series is the complete linear system |K| with [K] = KC . By Riemann-
Roch, dim |K| = g − 1 and deg K = 2g − 2. Moreover, it is the only series on a curve
of genus g that has order d = 2g − 1 and dimension r = g − 1. Inflection points for this
system are called Weierstrass points, and the Weierstrass weight of such a point is its
inflectionary weight with respect to K.

Corollary 6. The total Weierstrass weight on a curve of genus g is

g3 − g = (g + 1)g(g − 1).

Proof. Thm. 6 with d = 2g − 2 and r = g − 1. �
For any q ≥ 1, we use the linear system qK to define q-Weierstrass points, which have

q-Weierstrass weights. For q = 1, the results are above. For q = 2, d = deg qK =
q(2g − 2) and r = dim |qK| = (2q − 1)(g − 1).

Corollary 7. The total q-Weierstrass weight, for q ≥ 2, on a curve of genus g is

g(g − 1)2(2q − 1)2.

Remark 1. There are q-Weierstrass points for any curve of genus g > 1 and any q ≥ 1.

3.2. Weierstrass points via gap numbers. Let P be a point on Cg and consider the vector
spaces L(nP ) for n = 0, 1, . . . , 2g− 1. These vector spaces contains functions with poles
only at P up to a specific order. This leads to a chain of inclusions

L(0) ⊆ L(P ) ⊆ L(2P ) ⊆ · · · ⊆ L((2g − 1)P ) ,

with a corresponding non-decreasing sequence of dimensions

`(0) ≤ `(P ) ≤ `(2P ) ≤ · · · ≤ `((2g − 1)P ).

The following proposition shows that the dimension goes up by at most 1 in each step.

Proposition 3. For any n > 0, we have

`((n− 1)P ) ≤ `(nP ) ≤ `((n− 1)P ) + 1.
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Proof. It suffices to show `(nP ) ≤ `((n−1)P )+1. Suppose f1, f2 ∈ `(nP )\`((n−1)P ).
Since f1 and f2 have the same pole order at P , using the series expansions of f1 and f2

with a local coordinate, one can find a linear combination of f1 and f2 to eliminate their
leading terms. That is, there are constants c1, c2 ∈ k such that c1f1 + c2f2 has a strictly
smaller pole order at P , so c1f1 + c2f2 ∈ L((n − 1)P ). Then f2 is in the vector space
generated by a basis of L((n−1)P ) along with f1. Since this is true for any two functions
f1, f2, we conclude `(nP ) ≤ `((n− 1)P ) + 1, as desired.

�
For any integer n > 0, we call n a Weierstrass gap number of P if `(nP ) = `((n −

1)P ), that is, if there is no function f ∈ k(Cg)× such that (f)∞ = nP .

Theorem 7. For any point P , there are exactly g gap numbers αi(P ) with

1 = α1(P ) < α2(P ) < · · · < αg(P ) ≤ 2g − 1.

This theorem is a special case of the Noether “gap” theorem, which we state and prove
below. The set of gap numbers, denoted by GP , forms the Weierstrass gap sequence for
P .

Definition 4. If the gap sequence at P is anything other than {1, 2, . . . , g}, then P is
called a Weierstrass point.

Equivalently, P is a Weierstrass point if `(gP ) > 1; that is, if there is a function f with
(f)∞ = mP for some m with 1 < m ≤ g. The notion of gaps can be generalized, which
we briefly describe. Let P1, P2, . . . , be a sequence of (not necessarily distinct) points on
Cg . Let D0 = 0 and, for n ≥ 1, let Dn = Dn−1 + Pn. One constructs a similar sequence
of vector spaces

L(D0) ⊆ L(D1) ⊆ L(D2) ⊆ · · · ⊆ L(Dn) ⊆ · · · ,
with a corresponding non-decreasing sequence of dimensions

`(D0) < `(D1) < `(D2) < · · · < `(Dn) < · · · .
If `(Dn) = `(Dn−1), then n is a Noether gap number of the sequence P1, P2, . . . .

Theorem 8. For any sequence P1, P2, . . . , there are exactly g Noether gap numbers ni
with

1 = n1 < n2 < · · · < ng ≤ 2g − 1.

Proof. In analog with Prop. 3, one can show the dimension goes up by at most 1 in each
step; that is,

`(Dn−1) ≤ `(Dn) ≤ `(Dn−1) + 1,

for all n > 0. First, note that the Riemann-Roch theorem is an equality for n > 2g − 1, so
the dimension goes up by 1 in each step, so there are no gap numbers greater than 2g − 1.

Now, consider the chain L(D0) ⊆ · · · ⊆ L(D2g−1). By Riemann-Roch, `(D0) = 1
and `(D2g−1) = g, so in this chain of vector spaces, the dimension must increase by 1
exactly g− 1 times in 2g− 1 steps. Thus, for n ∈ {1, 2, . . . , 2g− 1}, there are g values of
n such that `(Dn) = `(Dn−1). These g values are the Noether gap numbers. �

Remark 2. The Weierstrass “gap” theorem is a special case of the Noether “gap” theo-
rem, taking Pi = P for all i.

This result is a direct application of the Riemann-Roch theorem, and the proof can be
found in [30, III.5.4].
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Since a Weierstrass gap sequence contains g natural numbers between 1 and 2g−1, and
since its complement in N is a semi-group, we can begin to list the possible gap sequences
for points on curves of small genus.

• For g = 1, the only possible gap sequence is {1}. Note that this means a curve of
genus g = 1 has no Weierstrass points.

• For g = 2, the possible sequences are {1, 2} and {1, 3}.
• For g = 3, the possible sequences are {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 5}.

3.3. Weierstrass points via holomorphic differentials. Continuing with a point P on
a curve Cg , recall that n is a gap number precisely when `(nP ) = `((n − 1)P ). By
Riemann-Roch, this occurs exactly when

`(K − (n− 1)P )− `(K − nP ) = 1

for a canonical divisor K, which is the divisor associated to some differential dx. Thus
there is f ∈ k(Cg)× such that

(f) +K − (n− 1)P ≥ 0

and (f) +K − nP 6≥ 0, which implies that ordP (f · dx) = n− 1. Since

(f) +K ≥ (n− 1)P ≥ 0, for n ≥ 1,

n is a gap number of P exactly when there is a holomorphic differential f · dx such that
ordP (f · dx) = n− 1.

For H0(Cg,Ω1) the space of holomorphic differentials on Cg , by Riemann-Roch, the
dimension of H0(Cg,Ω1) is g. Let {ψi}, for i = 1, . . . , g, be a basis, chosen in such a way
that

ordP (ψ1) < ordP (ψ2) < · · · < ordP (ψg).

Let ni = ordP (ψi) + 1. The 1-gap sequence at P is {n1, n2, . . . , ng}.
We then have the following equivalent definition of a Weierstrass point. If the 1-gap

sequence at P is anything other than {1, 2, . . . , g}, then P is a Weierstrass point.
It follows that P is a Weierstrass point exactly when there is a holomorphic differential

f · dx with ordP (f · dx) ≥ g.

Definition 5. The Weierstrass weight of a point P is

w(P ) =

g∑
i=1

(ni − i).

In particular, P is a Weierstrass point if and only if w(P ) > 0.

3.4. Bounds for weights of Weierstrass points. Suppose Cg is a curve of genus g ≥ 1,
P ∈ Cg , and consider the 1-gap sequence of P {n1, n2, . . . , ng}. We will refer to the
non-gap sequence of P as the complement of this set within the set {1, 2, . . . , 2g}. That
is, the non-gap sequence is the sequence {α1, . . . , αg} where

1 < α1 < · · · < αg = 2g.

Proposition 4. For each integer j with 0 < j < g, αj + αg−j ≥ 2g.

Proof. Suppose there is some j with αj + αg−j < 2g. The non-gaps are contained in a
semigroup under addition, so for every k ≤ j, since αk+αg−j < 2g as well, αk+αg−j is
also a non-gap which lies between αg−j and αg = 2g. There are j such non-gaps, though
there can only be j−1 non-gaps between αg−j and αg . Thus, we have a contradiction. �
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Proposition 5. For P ∈ Cg ,

w(P ) ≤ g(g − 1)

2
,

with equality if and only if P is a branch point on a hyperelliptic curve Cg .

Proof. The Weierstrass weight of P is

w(P ) =

g∑
i=1

ni −
g∑
i=1

i =

2g∑
i=1

i−
g∑
i=1

αi −
g∑
i=1

i =

2g−1∑
i=g+1

i−
g−1∑
i=1

αi.

The first sum is 3g(g − 1)/2 and the second sum, via Prop. 4 is at least (g − 1)g. Hence,
w(P ) ≤ g(g − 1)/2. To prove the second part, we note that the weight is maximized
when the sum of the non-gaps is minimized. That occurs when α1 = 2, which implies
the non-gap sequence is {2, 4, . . . , 2g}, and so the 1-gap sequence is {1, 3, 5, . . . , 2g− 1},
which is the 1-gap sequence of a branch point on a hyperelliptic curve. �

Corollary 8. For a curve of genus g ≥ 2, there are between 2g+ 2 and g3− g Weierstrass
points. The lower bound of 2g + 2 occurs only in the hyperelliptic case.

Proof. The total weight of the Weierstrass points is g3 − g. In Prop. 5, we see that the
maximum weight of a point is g(g − 1)/2, which occurs in the hyperelliptic case. Thus,

there must be at least
g3 − g

g(g − 1)/2
= 2g + 2 Weierstrass points. On the other hand, the

minimum weight of a point is 1, so there are at most g3 − g Weierstrass points. �

3.5. Higher-order Weierstrass points via holomorphic q-differentials. In the above,
we described Weierstrass points by considering the vector spaces L(K − nP ) for n ≥ 0.
Now, we let q ∈ N and proceed analogously with the vector spacesL(qK−nP ) to describe
q-Weierstrass points. If

`(qK − (n− 1)P )− `(qK − nP ) = 1,

then there is some q-fold differential dxq and some f ∈ k(Cg)× such that f · dxq is a
holomorphic q-fold differential with ordP (f · dxq) = n − 1. Let H0(Cg, (Ω1)q) denote
the space of holomorphic q-fold differentials on Cg , and let dq denote the dimension of this
space. By the Riemann-Roch, it follows that

dq =

{
g if q = 1,
(g − 1)(2q − 1) if q > 1.

Let {ψi}, for i = 1, . . . , dq , be a basis of H0(Cg, (Ω1)q), chosen in such a way that

ordP (ψ1) < ordP (ψ2) < · · · < ordP (ψdq ).

Let ni = ordP (ψi) + 1. The q-gap sequence at P is {n1, n2, . . . , ndq}. If the q-gap
sequence is anything other than {1, 2, . . . , dq}, then P is a q-Weierstrass point.

Thus, P is a q-Weierstrass point exactly when there is a holomorphic q-fold differential
f ·dxq such that ordP (f ·dxq) ≥ dq . When q = 1, we have a Weierstrass point. For q > 1,
a q-Weierstrass point is also called a higher-order Weierstrass point. The q-Weierstrass
weight of a point P is

w(q)(P ) =

dq∑
i=1

(ni − i).

In particular, P is a q-Weierstrass point if and only if w(q)(P ) > 0. For each q ≥ 1, there
are a finite number of q-Weierstrass points, which follows from Cor. 7.
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4. AUTOMORPHISMS

Let C be an irreducible and non-singular algebraic curve defined over a field k. We
denote its function field by F := k(C). The automorphism group of C is the group G :=
Aut(F/k) (i.e., all field automorphisms of F fixing k). It has been the focus of research
activity for over two hundred years and focused on one the following problems.

Problem 1. For a given g ≥ 2 and an algebraically closed field k, determine:
(1) a bound for Aut(Cg)
(2) the list all groups which occur as full automorphism groups of curves Cg of genus

g defined over k.
(3) for every group G from the list above, write down an equation for Cg such that

G ∼= Aut(Cg).

For further details on automorphisms we will refer to [21]. Throughout this section Cn
denotes the cyclic group of order n and Dn the dihedral group of order 2n.

4.1. The action of k-automorphisms on places. G acts on the places of F/k. Since
there is a one-to-one correspondence between places of F/k and points of C, this action
naturally extends to the points of C. For α ∈ G and P ∈ C, we denote its image under
α by Pα. In a natural way we extend this G-action to Divk(C). Let D ∈ Divk(C), say
D =

∑
nP · P . Then, the image of the divisor D under the action of α is given by

Dα =
∑

np · Pα.

Lemma 7. G acts on the setW of Weierstrass points.

Proof. The setW of Weierstrass points do not depend on the choice of the local coordinate
and so it is invariant under any σ ∈ Aut(Cg). �

Hence, in order to determine the automorphism group we can just study the action of
the group on the set of Weierstrass point of the curve. Then we have the following.

Proposition 6. Let α ∈ Aut(C) be a non-identity element. Then α has at most 2g + 2
fixed places.

Proof. Let α be a non-trivial element of Aut(F/k). Since α is not the identity, there
is some place p ∈ PF not fixed by α. Here, PF is the set of all places of F/k. Take
g + 1 distinct places p1, . . . , pg+1 in PF such that D = p1 + · · · + pg+1 and Dα share
no place. By [57, Thm. 6.82] there is z ∈ F \ k such that div(z)∞ = D. Then consider
w = z − α(z). Since z and α(z) have different poles then w 6= 0. Hence, w has exactly
2g + 2 poles. Then w has exactly 2g + 2 zeroes. But every fixed place of α is a zero of w.
Hence α has at most 2g + 2 fixed places. �

LetW be the set of Weierstrass points. From Cor. 8 we know thatW is finite. Since for
every α ∈ Aut(C), from Lem. 7 we have α(W) =W . Then we have the following.

Theorem 9. Let C be a genus g ≥ 2 irreducible, non-hyperelliptic curve defined over k
such that char k = p and α ∈ Aut(C). If p = 0 or p > 2g − 2 then α has finite order.

Hence, we have:

Lemma 8. If p = 0 and g ≥ 2 then every automorphism is finite.

In the case of p = 0, Hurwitz [59] showed |α| ≤ 10(g − 1). In 1895, Wiman improved
this bound to be |α| ≤ 2(2g + 1) and showed this is best possible. If |α| is a prime then
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|α| ≤ 2g+ 1. Homma [58] shows that this bound is achieved for a prime q 6= p if and only
if the curve is birationally equivalent to

ym−s(y − 1)s = xq, for 1 ≤ s < m ≤ g + 1.

If p > 0, we have the following; see [57, Thm. 11.34].

Theorem 10. Let C be a genus g ≥ 2, irreducible curve defined over k, with char k = p >
0 and α ∈ Aut(C) which fixes a place p ∈ PF . Then the order of α is bounded by

|α| ≤ 2p(g + 1)(2g + 1)2.

4.2. Finiteness of Aut(C). The main difference for g = 0, 1 and g ≥ 2 is that for g ≥ 2
the automorphism group is a finite group. This result was proved first by Schmid (1938).

Theorem 11 ([95]). Let C be an irreducible curve of genus g ≥ 2, defined over a field k,
char k = p ≥ 0. Then Aut(C) is finite.

4.2.1. Characteristic p = 0. For any σ ∈ Aut(Cg), we denote by |σ| its order and Fix(σ)
the set of fixed points of σ on Cg . Then we have:

Proposition 7. Any genus g ≥ 2 non-hyperelliptic Riemann surface Cg has a finite auto-
morphism group Aut(Cg).

Proof. Let σ ∈ Aut(Cg) with corresponding automorphism σ∗ of k(Cg). The Wronskian
does not depend on choice of local coordinate and thus is invariant under σ∗. Therefore, if
P is a q-Weierstrass point of a certain q-Weierstrass weight, then σ(P ) is a q-Weierstrass
point with the same weight. Thus, any automorphism permutes the set of Weierstrass
points.

Let SW denote the permutation group of the set of Weierstrass points. Since there are
finitely many Weierstrass points (as in Cor. 8), SW is a finite group. We have a homomor-
phism

φ : Aut(Cg)→ SW .

It will suffice to show that φ is injective. We prove this separately in the cases that Cg is
hyperelliptic or nonhyperelliptic.

Suppose Cg is non-hyperelliptic and suppose σ ∈ ker(φ). Then σ fixes all of the Weier-
strass points. From Cor. 8, since Cg is non-hyperelliptic, there are more than 2g+ 2 Weier-
strass points. By Prop. 6, σ fixes more than 2g + 2 Weierstrass points and so must be the
identity automorphism on Cg . Thus, φ is an injection into a finite group, so Aut(Cg) is
finite.

Suppose Cg is hyperelliptic, and let ω ∈ Aut(Cg) denote the hyperelliptic involution.
Suppose σ ∈ ker(φ) with σ 6= ω. σ fixes the 2g+ 2 branch points of Cg . Consider the map

π : Cg → Cg/〈ω〉 ∼= P1.

σ descends to an automorphism of P1 which fixes 2g+2 ≥ 6 points. Thus, σ is the identity
on P1. Thus, σ ∈ 〈ω〉, so σ is the identity in Aut(Cg), which means ker(φ) is finite, so
Aut(Cg) is finite.

�
Next is the famous Hurwitz’s theorem.

Theorem 12 (Hurwitz). Any genus g ≥ 2 Riemann surface Cg has at most 84(g − 1)
automorphisms.

The following two results consider the number of fixed points of an automorphism
σ ∈ Aut(Cg).
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Lemma 9. Let σ ∈ Aut(Cg) be a non-trivial automorphism. Then

|Fix(σ) | ≤ 2
|σ|+ g − 1

|σ| − 1
.

If Cg/σ ∼= P1 and |σ| is prime, then this is an equality.

Corollary 9. If Cg is not hyperelliptic, then for any non-trivial σ ∈ Aut(Cg) the number
of fixed points of σ is |Fix(σ)| ≤ 2g − 1.

Curves that attain this bound are called Hurwitz curves. Klein’s quartic is the only
such Hurwitz curve of genus g ≤ 3. Fricke showed that the next Hurwitz group occurs for
g = 7 and has order 504. Its group is SL(2, 8), and an equation for it was computed by
Macbeath [73] in 1965. Further Hurwitz curves occur for g = 14 and g = 17 (and for no
other values of g ≤ 19).

For a fixed g ≥ 2 denote by N(g) the maximum of the |Aut(Cg)|. Accola [1] and
Maclachlan [74] independently show that N(g) ≥ 8(g + 1) and this bound is sharp for
infinitely many g’s. If g is divisible by 3 then N(g) ≥ 8(g + 3).

The following terminology is standard: we sayG ≤ Aut(Cg) is a large automorphism
group in genus g if |G| > 4(g − 1). In this case the quotient of Cg by G is a curve of
genus 0, and the number of points of this quotient ramified in Cg is 3 or 4 (see [75] or [30],
pages 258-260).

4.2.2. Characteristic p > 0. In the case of positive characteristic the bound is higher due
to possible wild ramifications. The following was proved by Stichtenoth by extending
previous results of P. Roquette and others.

Theorem 13 ([105]). Let C be an irreducible curve of genus g ≥ 2, defined over a field k,
char k = p > 0. Then

|Aut(C)| < 16 · g4,

unless C is the curve with equation

yp
n

+ y = xp
n+1

,

in which case it has genus g = 1
2p
n(pn − 1) and |Aut(C)| = p3n(p3n + 1)(p2n − 1).

Hence, we have a bound for curves of genus g ≥ 2 even in characteristic p > 0. It
turns out that all curves with large groups of automorphisms are special curves. So getting
“better" bounds for the complementary set of curves has always been interesting. There is
an extensive amount of literature on this topic due to the interest of such bounds for coding
theory.

The following theorem, which is due to Henn, provides a better bound if the following
four families of curves are left out. This result may be sharpened to show that the order of
Aut(C) is less than 3 · (2g)5/2 except when k(C) belongs to one of five types of function
fields, as Henn points out in a footnote. Note that there is a flaw in Henn’s article which was
corrected in [41]. A full detailed account of automorphisms of curves has lately appeared
in the wonderful book [57].

Theorem 14 ([50]). Let C be an irreducible curve of genus g ≥ 2. If |G| ≥ 8g3, then C is
isomorphic to one of the following:

i) The hyperelliptic curve y2 + y + x2k+1 = 0, defined over a field of characteristic
p = 2. In this case the genus is g = 2k−1 and |G| = 22k+1(2k + 1).
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ii) The hyperelliptic curve y2 = xq−x, defined over a field of characteristic p > 2 such
that q is a power of p. In this case g = 1

2 (q− 1) and the reduced group Ḡ is isomorphic to
PSL2(q) or PGL2(q).

iii) The Hermitian curve yq + y = xq+1, defined over a field of characteristic p ≥ 2
such that q is a power of p. In this case g = 1

2 (q2 − q) and G is isomorphic to PSU(3, q)
or PGU(3, q).

iv) The curve yq + y = xq0(xq + x), for p = 2, q0 = 2r, and q = 2q2
0 . In this case,

g = q0(q − 1) and G ∼= Sz(q).

Determining the equation of the curve with given automorphism group is generally a
difficult problem which we will discuss in more details in the coming sections. Before
we go into detail about special families of curves we want to leave the reader with the
following problem.

Problem 2. Given an irreducible algebraic curve C with affine equation F (x, y) = 0,
defined over a field k, find an algorithm which determines the automorphism group of C
over k̄.

4.3. Hyperelliptic curves. Let k be an algebraically closed field of characteristic zero and
Cg be a genus g hyperelliptic curve given by the equation y2 = f(x). Denote the function
field of Cg by

K := k(Cg) = k(x, y)/〈y2 − f(x)〉.
Then, k(x) is the unique degree 2 genus zero subfield of K. K is a quadratic extension
field of k(x) ramified exactly at d = 2g+ 2 places α1, . . . , αd of k(x). The corresponding
places of K are the Weierstrass points of K. Let

B := {α1, . . . , αd}

and G := Aut(K/k). Since k(x) is the only genus 0 subfield of degree 2 of K, then G
fixes k(x). Thus, G0 := Gal(K/k(x)) = 〈τ〉, with τ2 = 1, is central in G. We call the
reduced automorphism group of K the group G := G/G0.

The reduced automorphism group G is isomorphic to one of the following:

Cn, Dn, A4, S4, A5

and branching indices of the corresponding cover P1
x → P1/G given by

(n, n), (2, 2, n), (2, 3, 3), (2, 4, 4), (2, 3, 5),

respectively. We fix a coordinate z in P1/G. Thus, G is the monodromy group of a cover

φ : P1
x → P1

z.

Denote by q1, . . . , qr the corresponding branch points of φ. Let S be the set of branch
points of a : Cg → P1

z . Clearly q1, . . . , qr ∈ S. Let W denote the images in P1 of
Weierstrass points of Cg and

V :=

r⋃
i=1

φ−1(qi).

For each q1, . . . , qr we have a corresponding permutation σ1, . . . , σr ∈ Sn. The tuple
σ̄ := (σ1, . . . , σr) is the signature of G. Thus, G = 〈σ1, . . . , σr〉, and σ1 · · ·σr = 1.
Since each of the above groups is embedded in PGL2(k) then we can have these generating
systems σ1, . . . , σr as matrices in PGL2(k). Below we display all the cases:
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i) Cn ∼=
〈[
ζn 0
0 1

]
,

[
ζn−1
n 0
0 1

]〉
ii) Dn

∼=
〈[

0 1
1 0

]
,

[
0 1
1 0

]
,

[
ζn 0
0 1

]〉
iii) A4

∼=
〈[
−1 0
0 1

]
,

[
1 i
1 −i

]〉
iv) S4

∼=
〈[
−1 0
0 1

]
,

[
0 −1
1 0

]
,

[
−1 −1
1 1

]〉
v) A5

∼=
〈[
ω 1
1 −ω

]
,

[
ω ζ4

1 −ζ4ω

]〉
(3)

where ω = −1+
√

5
2 , ζn is a primitive nth root of unity, ζ is a primitive 5th root of unity,

and i is a primitive 4th root of unity.
The group G given above acts on k(x) via the natural way. The fixed field is a genus 0

field, say k(z). Thus, z is a degree |G| rational function in x, say z = φ(x).

Lemma 10. Let H be a finite subgroup of PGL2(k). Let us identify each element of H
with the corresponding Moebius transformation and let si be the i-th elementary symmetric
polynomial in the elements ofH , i = 1, . . . , |H|. Then any non-constant si generates k(z).

Proof. It is easy to check that the si are the coefficients of the minimum polynomial of x
over k(z). It is well-known that any non-constant coefficient of this polynomial generates
the field. �

The fixed field for each of the groups G in cases i) - v) is generated by the function

i) z = xn

ii) z = xn +
1

xn

iii) z =
x12 − 33x8 − 33x4 + 1

x2(x4 − 1)2

iv) z =
(x8 + 14x4 + 1)3

108 (x(x4 − 1))
4

v) z =

(
−x20 + 228x15 − 494x10 − 228x5 − 1

)3
1728 (x(x10 + 11x5 − 1))

5

(4)

Notice that the branch points of a rational function φ(x) = f(x)
g(x) are exactly the zeroes

of the discriminant of the polynomial r(x) := f(x)− t · g(x) with respect to x. Then the
branch points of each of the above functions are

i) {0,∞},
ii) {−2, 2,∞},

iii) {∞,−6i
√

3, 6i
√

3},
iv) {0, 1,∞},
v) {0, 1728,∞}.

The group G is a degree 2 central extension of G. The following is proved in [46].

Lemma 11. Let p ≥ 2, α ∈ G and ᾱ its image in G with order | ᾱ | = p. Then,
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i) |α | = p if and only if it fixes no Weierstrass points.
ii) |α | = 2p if and only if it fixes some Weierstrass point.

Let W denote the images in P1
x of Weierstrass places of Cg and V := ∪3

i=1φ
−1(qi). Let

z = Ψ(x)
Υ(x) , where Ψ,Υ ∈ k[x]. For each branch point qi, i = 1, 2, 3 we have the degree |G|

equation z · Υ(x) − qi · Υ(x) = Ψ(x), where the multiplicity of the roots correspond to
the ramification index for each qi (i.e., the index of the normalizer in G of σi). We denote
the ramification of φ : P1

x → P1
z , by ϕrm, χ

s
n, ψ

t
p, where the subscript denotes the degree of

the polynomial.
Let λ ∈ S \ {q1, q2, q3}. The points in the fiber of a non-branch point λ are the roots of

the equation: Ψ(x)−λ ·Υ(x) = 0. To determine the equation of the curve we simply need
to determine the Weierstrass points of the curve. For each fixed φ there are the following
eight cases:

1) V ∩W = ∅,
2) V ∩W = φ−1(q1),

3) V ∩W = φ−1(q2),

4) V ∩W = φ−1(q3),

5) V ∩W = φ−1(q1) ∪ φ−1(q2),

6) V ∩W = φ−1(q2) ∪ φ−1(q3),

7) V ∩W = φ−1(q1) ∪ φ−1(q3),

8) V ∩W = φ−1(q1) ∪ φ−1(q2) ∪ φ−1(q3).

(5)

It turns out that the above cases also determine the full automorphism groups. We define
the following groups as follows:

Vn :=〈 x, y |x4, yn, (xy)2, (x−1y)2 〉, Hn := 〈x, y | x4, y2x2, (xy)n 〉,
Gn :=〈x, y | x2yn, y2n, x−1yxy 〉, Un := 〈x, y |x2, yn, xyxyn+1〉,

(6)

These groups are also called twisted dihedral, double dihedral, generalized quaternion,
and semidihedral. We warn the reader that these terms are not standard in the literature.
They are all four degree 2 central extensions of the dihedral group Dn and therefore have
order 4n. Notice that V2 is isomorphic with the dihedral group of order 8 and H2

∼= U2
∼=

C2 ⊗ C4. Furthermore, we have the following result, the proof is elementary, and we skip
the details.

Remark 3. i) If n ≡ 1 mod 2 then H4n
∼= G4n

ii) If n = 2s+1 then Gn = Q2s+1 for any s ∈ Z.

The following groups

W2 :=〈x, y |x4, y3, yx2y−1x2, (xy)4〉, W3 := 〈x, y |x2, y3, x2(xy)4, (xy)8〉

are degree 2 central extensions of S4. We have the following result:

Theorem 15. The full automorphism group of a hyperelliptic curve is isomorphic to one
of the following C2×Cn, Cn, C2×Dn, Vn, Dn, Hn, Gn, Un, C2×A4, SL2(3), C2⊗S4,
GL2(3), W2, W3 C2 ×A5, SL2(5).

In Section 7 we will show how to determine a parametric equation of the curve for
each case. Can this be done for non-hyperelliptic curves? A natural generalization of
hyperelliptic curves are the superelliptic curves which we will discuss next.
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Part 2. Superelliptic curves

5. SUPERELLIPTIC CURVES

To generalize the theory of hyperelliptic case, we consider curves which have an auto-
morphism similar to the hyperelliptic involution.

5.1. Superelliptic Riemann surfaces. A curve C is called cyclic n-gonal, where n ≥ 2
is an integer, if there exists τ ∈ Aut(C) of order n so that the quotient O = C/〈τ〉 has
genus zero; τ is called a n-gonal automorphism and H = 〈τ〉 ∼= Cn a n-gonal group of
C. Let us consider, in this case, a regular branched covering π : C → P1(k) whose deck
covering group is H . If H is a normal subgroup of Aut(C), then the computation of the
group G = Aut(C) can be done by studying the short sequence

1→ H → G→ G,

where G := G/H is called the reduced automorphism group of C.
The case n = p a prime integer has been the most studied one. For instance, in

[42] it was observed that any two p-gonal groups of C are conjugated in Aut(C) and,
by Castelnuovo-Severi’s inequality [2, 23], for g > (p − 1)2 the p-gonal group is unique.
This uniqueness property also holds for any integer n if C/H is fully ramified, see [64].
The uniqueness also holds if 2 ≤ g < (p − 1)(p − 5)/10 (for instance, for p ≥ 11 and
g = (p− 1)/2) [51].

Let us assume that π : C → P1 is tame and the finite branch values of π : C → P1

are given by the collection of pairwise different points a1, . . . , ar ∈ P1. Then the cyclic
n-gonal curve C can be represented by an affine irreducible algebraic curve, which might
have singularities, of the following form (called a cyclic n-gonal curve)

(7) yn =

r∏
j=1

(x− aj)lj ,

where (i) l1, . . . , lr ∈ {1, . . . , n − 1}, (ii) gcd(n, l1, . . . , lr) = 1; in this model, τ and π
are given by τ(x, y) = (x, ωny), where ωn = e2πi/n, and π(x, y) = x. The point ∞ is
a branch value of π if and only if l1 + · · · + lr is not congruent to zero module n. Let us
denote by N the normalizer of H in Aut(C).

A particular class of cyclic n-gonal curves, called superelliptic curves of level n, has
been introduced in [13]. These correspond, in the above algebraic description Eq. (7), to
the case when all the exponents lj are equal to 1. In this case, τ happens to be central in
N . In the generic situation, it happens that N = Aut(C), that is, τ is central in Aut(C);
τ is called a superelliptic automorphism of level n and H = 〈τ〉 a superelliptic group of
level n. In this case, all cone points of C/H have order n and a classification of those was
provided in [92].

For the general cyclic n-gonal curve Eq. (7) it happens that, for the generic case, τ is
central inN . In this situation we call τ a generalized superelliptic automorphism of level
n, H a generalized superelliptic group of level n, C a generalized superelliptic surface
of level n and the corresponding cyclic n-gonal curve Eq. (7) a generalized superelliptic
curve of level n; see [54] for details.

Motivated by the above discussion we have the following definition.

Definition 2. A a genus g ≥ 2 smooth, irreducible, algebraic curve C defined over an al-
gebraically closed field k is called a superelliptic curve of level n if there exist an element
τ ∈ Aut(C) of order n such that τ is central and the quotient C/〈τ〉 has genus zero.
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Next we will see that with the above definition, superelliptic curves mimic exactly the
theory of hyperelliptic curves.

Let C be a genus g ≥ 2 defined over k such that there exists an order n > 1 automor-
phism σ ∈ Aut(C) with the following properties: i) H := 〈σ〉 is normal in Aut(C), and
ii) C/〈σ〉 has genus zero. Such curves are called superelliptic curves and their Jacobians,
superelliptic Jacobians. They have affine equation

(8) C : yn = f(x) =

d∏
i=1

(x− αi)

We denote by σ the superelliptic automorphism of C. So σ : C → C such that

σ(x, y)→ (x, ξny),

where ξn is a primitive n-th root of unity. Notice that σ fixes 0 and the point at infinity in
P1
y .

The natural projection
π : C → P1

x = C/〈σ〉
is called the superelliptic projection. It has deg π = n and π(x, y) = x. This cover is
branched at exactly at the roots α1, . . . , αd of f(x).

If the discriminant ∆(f, x) 6= 0 and d > n then from the Riemann-Hurwitz formula we
have

g =
1

2

(
n(d− 1)− d− gcd(n, d)

)
+ 1

There is a lot of confusion in the literature over the term superelliptic or cyclic curves. To
us a superelliptic curve it is a curve which satisfies Eq. (8) with discriminant ∆(f, x) 6= 0.

If gcd(n, d) = 1 then deg f is either 2g
n−1 + 2 or 2g

n−1 + 1, depending on whether or not
the place at infinity is a branch point of the superelliptic projection map.

5.2. Automorphism groups. Let k be an algebraically closed field of characteristic p ≥ 0
and Cg be a genus g cyclic curve given by the equation yn = f(x) for some f ∈ k[x]. Let
K := k(x, y) be the function field of Cg . Then k(x) is degree n genus zero subfield of K.
Let G = Aut(K/k). Since

Cn := Gal(K/k(x)) = 〈τ〉,

with τn = 1 such that 〈τ〉 � G, then group G := G/Cn and G ≤ PGL2(k). Hence G is
isomorphic to one of the following:

Cm, Dm, A4, S4, A5,

semidirect product of elementary Abelian group with cyclic group, PSL2(q) and PGL2(q),
see [108].

K = k(x, y)

Cn

G

��

k(x, yn)

G

k(z)

Cg

φ0 Cn
��

Φ

��

P1

φ G
��

P1
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The group G acts on k(x) via the natural way. The fixed field is a genus 0 field, say
k(z). Thus z is a degree |G| rational function in x, say z = φ(x). We illustrate with the
above diagram.

Let φ0 : Cg → P1 be the cover which corresponds to the degree n extension K/k(x).
Then Φ := φ ◦ φ0 has monodromy group G := Aut(Cg). From the basic covering the-
ory, the group G is embedded in the group Sl where l = deg P. There is an r-tuple
σ := (σ1, . . . , σr), where σi ∈ Sl such that σ1, . . . , σr generate G and σ1 . . . σr = 1.
The signature of P is an r-tuple of conjugacy classes C := (C1, . . . , Cr) in Sl such that
Ci is the conjugacy class of σi. We use the notation n to denote the conjugacy class of
permutations which is cycle of length n. Using the signature of φ : P1 → P1 one finds out
the signature of Φ : Cg → P1 for any given g and G. Let E be the fixed field of G, the
Hurwitz genus formula states that

(9) 2(gK − 1) = 2(gE − 1)|G|+ deg (DK/E)

with gK and gE the genera of K and E respectively and DK/E the different of K/E.
Let P 1, P 2, . . . , P r be ramified primes of E. If we set di = deg (P i) and let ei be the
ramification index of the P i and let βi be the exponent of P i in DK/E . Hence, Eq. (9)
may be written as

(10) 2(gK − 1) = 2(gE − 1)|G|+ |G|
r∑
i=1

βi
ei
di

If P i is tamely ramified then βi = ei−1 or if P i is wildly ramified then βi = e∗i qi+qi−2
with ei = e∗i qi, e

∗
i relatively prime to p, qi a power of p and e∗i |qi − 1. For fixed G, C

the family of covers P : Cg → P1 is a Hurwitz space H(G,C). H(G,C) is an irreducible
algebraic variety of dimension δ(G,C). Using equation Eq. (10) and signature C one can
find out the dimension for each G.

We denote by Km the following semidirect product of elementary Abelian group with
cyclic group Km := 〈{σa, t|a ∈ Um}〉, where t(x) = ξ2x, σa(x) = x + a, for each
a ∈ Um,

Um := {a ∈ k|(a

pt−1
m −1∏
j=0

(am − bj)) = 0}

bj ∈ F∗q ,m|pt−1 and ξ is a primitive 2m-th root of unity. Um is a subgroup of the additive
group of k.

Lemma 12. Let k be an algebraically closed field of characteristic p, G be a finite sub-
group of PGL2(k) acting on the field k(x). Then, G is isomorphic to one of the following
groups

Cm, Dm, A4, S4, A5, U = Ctp,Km,PSL2(q),PGL2(q),

where q = pf and (m, p) = 1. Moreover, the fixed subfield k(x)G = k(z) is given
by Table 1, where α = q(q−1)

2 , β = q+1
2 , and Ht is a subgroup of the additive group of k

with |Ht| = pt and bj ∈ k∗.

By considering the lifting of ramified points in each G, we divide each G into sub
cases and determine the signature of each sub case by looking the behavior of lifting and
ramification of G. Using that signature and Eq. (10) we calculate the moduli dimension δ
(cf. Section 5) for each case.
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Case G z Ramification

1 Cm, (m, p) = 1 xm (m,m)

2 D2m, (m, p) = 1 xm + 1
xm

(2, 2,m)

3 A4, p 6= 2, 3 x12−33x8−33x4+1
x2(x4−1)2

(2, 3, 3)

4 S4, p 6= 2, 3 (x8+14x4+1)3

108(x(x4−1))4
(2, 3, 4)

5 A5, p 6= 2, 3, 5 (−x20+228x15−494x10−228x5−1)3

(x(x10+11x5−1))5
(2, 3, 5)

A5, p = 3 (x10−1)6

(x(x10+2ix5+1))5
(6, 5)

6 U
∏
a∈Ht

(x+ a) (pt)

7 Km (x

pt−1
m
−1∏

j=0

(xm − bj))m (mpt,m)

8 PSL2(q), p 6= 2 ((xq−x)q−1+1)
q+1
2

(xq−x)
q(q−1)

2

(α, β)

9 PGL2(q) ((xq−x)q−1+1)q+1

(xq−x)q(q−1) (2α, 2β)

TABLE 1. Rational functions correspond to each reduced automorphism group

Theorem 16 ([93]). Let C be a genus g ≥ 2 superelliptic curve. The signature of Φ : C →
CAut(C) and the moduli dimension δ are given in Table 2, where m = |PSL2(q)| for cases
38-41 and m = |PGL2(q)| for cases 42-45.

# G δ(G,C) C = (C1, . . . , Cr)

1 (p,m) = 1
2(g+n−1)
m(n−1)

− 1 (m,m,n, . . . , n)

2 Cm
2g+n−1
m(n−1)

− 1 (m,mn, n, . . . , n)

3 2g
m(n−1)

− 1 (mn,mn, n, . . . , n)

4 (p,m) = 1 g+n−1
m(n−1)

(2, 2,m, n, . . . , n)

5 2g+m+2n−nm−2
2m(n−1)

(2n, 2,m, n, . . . , n)

6 D2m
g

m(n−1)
(2, 2,mn, n, . . . , n)

7 g+m+n−mn−1
m(n−1)

(2n, 2n,m, n, . . . , n)

continued on the next page

Albanian J. Math. 13 (2019), no. 1, 107-200

http://albanian-j-math.com/vol-13.html


MALMENDIER, SHASKA 131

# G δ(G,C) C = (C1, . . . , Cr)

8 2g+m−mn
2m(n−1)

(2n, 2,mn, n, . . . , n)

9 g+m−mn
m(n−1)

(2n, 2n,mn, n, . . . , n)

10 n+g−1
6(n−1)

(2, 3, 3, n, . . . , n)

11 A4
g−n+1
6(n−1)

(2, 3n, 3, n, . . . , n)

12 g−3n+3
6(n−1)

(2, 3n, 3n, n, . . . , n)

13 g−2n+2
6(n−1)

(2n, 3, 3, n, . . . , n)

14 g−4n+4
6(n−1)

(2n, 3n, 3, n, . . . , n)

15 g−6n+6
6(n−1)

(2n, 3n, 3n, n, . . . , n)

16 g+n−1
12(n−1)

(2, 3, 4, n, . . . , n)

17 g−3n+3
12(n−1)

(2, 3n, 4, n, . . . , n)

18 g−2n+2
12(n−1)

(2, 3, 4n, n, . . . , n)

19 g−6n+6
12(n−1)

(2, 3n, 4n, n, . . . , n)

20 S4
g−5n+5
12(n−1)

(2n, 3, 4, n, . . . , n)

21 g−9n+9
12(n−1)

(2n, 3n, 4, n, . . . , n)

22 g−8n+8
12(n−1)

(2n, 3, 4n, n, . . . , n)

23 g−12n+12
12(n−1)

(2n, 3n, 4n, n, . . . , n)

24 g+n−1
30(n−1)

(2, 3, 5, n, . . . , n)

25 g−5n+5
30(n−1)

(2, 3, 5n, n, . . . , n)

26 g−15n+15
30(n−1)

(2, 3n, 5n, n, . . . , n)

27 g−9n+9
30(n−1)

(2, 3n, 5, n, . . . , n)

28 A5
g−14n+14
30(n−1)

(2n, 3, 5, n, . . . , n)

29 g−20n+20
30(n−1)

(2n, 3, 5n, n, . . . , n)

30 g−24n+24
30(n−1)

(2n, 3n, 5, n, . . . , n)

31 g−30n+30
30(n−1)

(2n, 3n, 5n, n, . . . , n)

32 2g+2n−2
pt(n−1)

− 2 (pt, n, . . . , n)

33 U 2g+npt−pt
pt(n−1)

− 2 (npt, n, . . . , n)

continued on the next page
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# G δ(G,C) C = (C1, . . . , Cr)

34
2(g+n−1)
mpt(n−1)

− 1 (mpt,m, n, . . . , n)

35 2g+2n+pt−npt−2
mpt(n−1)

− 1 (mpt, nm, n, . . . , n)

36 Km
2g+npt−pt
mpt(n−1)

− 1 (nmpt,m, n, . . . , n)

37 2g
mpt(n−1)

− 1 (nmpt, nm, n, . . . , n)

38
2(g+n−1)
m(n−1)

− 1 (α, β, n, . . . , n)

39 PSL2(q)
2g+q(q−1)−n(q+1)(q−2)−2

m(n−1)
− 1 (α, nβ, n, . . . , n)

40
2g+nq(q−1)+q−q2

m(n−1)
− 1 (nα, β, n, . . . , n)

41 2g
m(n−1)

− 1 (nα, nβ, n, . . . , n)

42
2(g+n−1)
m(n−1)

− 1 (2α, 2β, n, . . . , n)

43 PGL2(q)
2g+q(q−1)−n(q+1)(q−2)−2

m(n−1)
− 1 (2α, 2nβ, n, . . . , n)

44
2g+nq(q−1)+q−q2

m(n−1)
− 1 (2nα, 2β, n, . . . , n)

45 2g
m(n−1)

− 1 (2nα, 2nβ, n, . . . , n)

Table 2: The signature C and dimension δ for char > 5

Next we can complete the classification of automorphism groups of superelliptic curves
defined over any algebraically closed field of characteristic char k > 2.

Theorem 17 ([92]). Let Cg be an irreducible cyclic curve of genus g ≥ 2, defined over an
algebraically closed field k, char (k) = p 6= 2,G = Aut(Cg),G its reduced automorphism
group.

(1) If G ∼= Cm then G ∼= Cmn or
〈r, σ| rn = 1, σm = 1, σrσ−1 = rl〉

where (l,n)=1 and lm ≡ 1 (mod n).
(2) If G ∼= D2m then G ∼= D2m × Cn or

G5 = 〈r, σ, t| rn = 1, σ2 = r, t2 = 1, (σt)m = 1, σrσ−1 = r, trt−1 = rn−1〉
G6 =D2mn

G7 = 〈r, σ, t| rn = 1, σ2 = r, t2 = rn−1, (σt)m = 1, σrσ−1 = r, trt−1 = r〉
G8 = 〈r, σ, t| rn = 1, σ2 = r, t2 = 1, (σt)m = r

n
2 , σrσ−1 = r, trt−1 = rn−1〉

G9 = 〈r, σ, t| rn = 1, σ2 = r, t2 = rn−1, (σt)m = r
n
2 , σrσ−1 = r, trt−1 = r〉

(3) If G ∼= A4 and p 6= 3 then G ∼= A4 × Cn or

G′10 = 〈r, σ, t| rn = 1, σ2 = 1, t3 = 1, (σt)3 = 1, σrσ−1 = r, trt−1 = rl〉

G′12 = 〈r, σ, t| rn = 1, σ2 = 1, t3 = r
n
3 , (σt)3 = r

n
3 , σrσ−1 = r, trt−1 = rl〉

where (l, n) = 1 and l3 ≡ 1 (mod n) or
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〈r, σ, t| rn = 1, σ2 = r
n
2 , t3 = r

n
2 , (σt)5 = r

n
2 , σrσ−1 = r, trt−1 = r〉

or
G10 = 〈r, σ, t| rn = 1, σ2 = 1, t3 = 1, (σt)3 = 1, σrσ−1 = r, trt−1 = rk〉

G13 = 〈r, σ, t| rn = 1, σ2 = r
n
2 , t3 = 1, (σt)3 = 1, σrσ−1 = r, trt−1 = rk〉

where (k, n) = 1 and k3 ≡ 1 (mod n).
(4) If G ∼= S4 and p 6= 3 then G ∼= S4 × Cn or

G16 = 〈r, σ, t| rn = 1, σ2 = 1, t3 = 1, (σt)4 = 1, σrσ−1 = rl, trt−1 = r〉

G18 = 〈r, σ, t| rn = 1, σ2 = 1, t3 = 1, (σt)4 = r
n
2 , σrσ−1 = rl, trt−1 = r〉

G20 = 〈r, σ, t| rn = 1, σ2 = r
n
2 , t3 = 1, (σt)4 = 1, σrσ−1 = rl, trt−1 = r〉

G22 = 〈r, σ, t| rn = 1, σ2 = r
n
2 , t3 = 1, (σt)4 = r

n
2 , σrσ−1 = rl, trt−1 = r〉

where (l, n) = 1 and l2 ≡ 1 (mod n).
(5) If G ∼= A5 and p 6= 5 then G ∼= A5 × Cn or

〈r, σ, t| rn = 1, σ2 = r
n
2 , t3 = r

n
2 , (σt)5 = r

n
2 , σrσ−1 = r, trt−1 = r〉

(6) If G ∼= U then G ∼= U × Cn or

< r, σ1, σ2, . . . , σt|rn = σp1 = σp2 = · · · = σpt = 1,

σiσj = σjσi, σirσ
−1
i = rl, 1 ≤ i, j ≤ t >

where (l, n) = 1 and lp ≡ 1 (mod n).
(7) If G ∼= Km then G ∼=

< r, σ1, . . . , σt, v|rn = σp1 = · · · = σpt = vm = 1, σiσj = σjσi,

vrv−1 = r, σirσ
−1
i = rl, σivσ

−1
i = vk, 1 ≤ i, j ≤ t >

where (l, n) = 1 and lp ≡ 1 (mod n), (k,m) = 1 and kp ≡ 1 (mod m) or〈
r, σ1, . . . , σt|rnm = σp1 = · · · = σpt = 1, σiσj = σjσi, σirσ

−1
i = rl, 1 ≤ i, j ≤ t

〉
where (l, nm) = 1 and lp ≡ 1 (mod nm).

(8) If G ∼= PSL2(q) then G ∼= PSL2(q)× Cn or SL2(3).
(9) If G ∼= PGL2(q) then G ∼= PGL2(q)× Cn.

Applying the above theorem we can obtain the automorphism groups of a genus 3 su-
perelliptic curves defined over algebraically closed field of characteristic p 6= 2. Below we
list the GAP group ID’s of those groups.

Lemma 13. Let Cg be a genus 3 superelliptic curve defined over a field of characteristic
p 6= 2. Then the automorphism groups of Cg are as follows.

i): p = 3: (2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (8, 3), (7, 1), (14, 2), (6, 2), (8, 1),
(8, 5), (16, 11), (16, 10), (32, 9), (30, 2), (16, 7), (16, 8), (6, 2).

ii): p = 5: (2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (8, 3), (7, 1), (21, 1), (14, 2), (6, 2),
(12, 2), (9, 1), (8, 1), (8, 5), (16, 11), (16, 10), (32, 9), (42, 3), (12, 4), (16, 7),
(24, 5), (18, 3), (16, 8), (48, 33), (48, 48).

iii): p = 7: (2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (8, 3), (7, 1), (21, 1), (6, 2), (12, 2),
(9, 1), (8, 1), (8, 5), (16, 11), (16, 10), (32, 9), (30, 2), (42, 3), (12, 4), (16, 7),
(24, 5), (18, 3), (16, 8), (48, 33), (48, 48).

iv): p = 0 or p > 7: (2, 1), (4, 2), (3, 1), (4, 1), (8, 2), (14, 2), (6, 2), (9, 1), (8, 5),
(16, 11), (32, 9), (12, 4), (16, 13), (24, 5), (48, 33), (48, 48), (96, 64).
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Recall that the list for p = 0 is the same as for p > 7. While the above result seems
rather technical it can be used very effectively to write down the complete list of automor-
phism groups for all superelliptic curves for any given g ≥ 2. Such lists were compiled for
all 2 ≤ g ≤ 10 in [78].

5.3. Weierstrass points of superelliptic curves. Most of this section is summarizing the
results in [104] and [102]. Let Cg be a smooth superelliptic curve given by an affine equa-
tion yn = f(x) with n ≥ 2 and f(x) ∈ k[x]. Since we are assuming that Cg is smooth,
then f(x) is a separable polynomial of degree deg f = d > n. Hence, ∆f 6= 0. Consider
the following.

Problem 3. Determine all the q-Weierstrass points superelliptic curves yn = f(x).

Let {α1, α2, . . . , αd} denote the d distinct roots of f(x), and for each i let bi = (αi, 0)
be an affine branch point of the cover φ : Cg → P1(k). For any c ∈ P1(k) let P c1 , . . . , P

c
n

denote the n points in the fiber φ(c). Let r = gcd(n, d). All points on this model of the
curve are smooth except possibly the point at infinity, which is singular when d > n + 1.
In a smooth model for the curve, the point at infinity splits into r points which we denote
P∞1 , . . . , P∞r . One then has the following divisors:

• (x− c) =

n∑
j=1

P cj −
n

r

r∑
m=1

P∞m ,

• (x− αi) = nbi −
n

r

r∑
m=1

P∞m ,

• (y) =

d∑
j=1

bj −
d

r

r∑
m=1

P∞m ,

• (dx) = (n− 1)

d∑
j=1

bj −
(n
r

+ 1
) r∑
m=1

P∞m .

Since (dx) is a canonical divisor and hence has degree 2g− 2, we find the genus g of Cg is
given by

2g − 2 = nd− n− d− gcd(n, d).

In particular, if n and d are relatively prime, then we obtain g =
(n− 1)(d− 1)

2
.

Lemma 14. For a curve Cg given by an affine equation yn = f(x), with f(x) separable
of degree d and g > 1, we have g ≥ n with equality only when (n, d) = (2, 5), (2, 6), or
(3, 4).

Proof. One can check that if (n, d) = (2, 5), (2, 6), or (3, 4), then g = n. If n = 2 and
d ≥ 7, then

g =
d− gcd(d, 2)

2
≥ 3 > n.

If n = 3 and d ≥ 5, then

g =
2d− 1− gcd(d, 3)

2
≥ 4 > n.

If n ≥ 4, then d ≥ 5, and so

2g = (n− 1)(d− 1)− gcd(n, d) + 1 ≥ (n− 1)(d− 2) ≥ 3(n− 1).

Thus, g ≥ 3
2 (n− 1), which is larger than n for n > 3. �
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To construct a basis of H0(Cg, (Ω1)q), we first note that(
dx

yn−1

)
=

2g − 2

r

r∑
m=1

P∞m .

Fix αi and q ≥ 1; for any a, b ∈ Z and we also let

ha,b,q(x, y) = (x− αi)a yb
(

dx

yn−1

)q
.

Then, the divisor of ha,b,q is given by

(ha,b,q(x, y)) = anbi + b

d∑
j=1

bj +
(2g − 2)q − an− bd

r

r∑
m=1

P∞m .

In particular, this divisor is effective precisely when a ≥ 0, b ≥ 0, and an+bd ≤ (2g−2)q.
Since yn = f(x), the functions ha,b,q(x, y) are linearly independent if we assume a ≥ 0
and 0 ≤ b < n.

Define the set

Sn,d,q := {(a, b) ∈ Z2 : a ≥ 0, 0 ≤ b < n, 0 ≤ an+ bd ≤ (2g − 2)q}.
A simple counting argument gives the following:

Lemma 15. The set Sn,d,q contains exactly dq distinct elements.

From this set Sn,d,q , we obtain a basis

Bq = {ha,b,q(x, y) : (a, b) ∈ Sn,d,q}.
Since we already have dim(H0(Cg, (Ω1)q)) = dq , we obtain the following:

Theorem 18. For any root αi and any q ≥ 1, the set Bq forms a basis of H0(Cg, (Ω1)q).

The above result was proved in [101, Prop. 13]. Next we have the following result:

Proposition 8. Any affine branch point bi is a q-Weierstrass point for all q ≥ 1.

Proof. One can calculate the q-Weierstrass weight of any branch point bi = (αi, 0) by
calculating the order of vanishing of the basis elements at bi. In particular, one checks that

ordbi (ha,b,q(x, y)) = an+ b.

Since 0 ≤ b < n, these valuations are all distinct non-negative numbers. Thus, we obtain
for the q-Weierstrass weight of the point bi = (αi, 0) the following

w(q)(bi) =
∑

(a,b)∈Sn,d,q

(an+ b+ 1)−
dq∑
m=1

m.

Thus, this formula shows that w(q)(bi) > 0 for any q. �
Determining Weierstrass points gives a Weierstrass equation for hyperelliptic curves.

The above results seem to suggest that the same can be done for superelliptic curves.
Next, we leave the reader with a problem of using the information on Weierstrass points

to determine if the curve is superelliptic. As far as we are aware, this is still an open
problem.

Problem 4. Given an irreducible algebraic curve C with affine equation F (x, y) = 0, find
an algorithm which determines whether C is superelliptic.

A further discussion of this problem is intended in [96]. Moreover, using the approach
in [98] and [94] this would determine the full automorphism group of superelliptic curves.
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6. MODULI SPACE OF CURVES AND SUPERELLIPTIC LOCI

6.1. Moduli space of curves. LetMg be the moduli space of smooth, projective curves
of genus g, andMg0,r the moduli space of genus-g0 curves with r distinct marked points,
where we view the marked points as unordered. The term space here refers to a Deligne-
Mumford stack (in algebraic geometry) or orbifold (in an analytic setting). We will focus
on the latter notion to describe the moduli space.

To explain this in more detail, we will first defineMg0,r as a set and then endow this
set with the structure of a smooth, complex, n = 3g0 − 3 + r-dimensional orbifold that is
locally an open ball in Cn divided by a finite group action. As a set, we defineMg0,r to
be the set of isomorphism classes of smooth, projective curves of genus g0 with r marked
points.

Here, we must insist that 2 − 2g0 − r < 0, since only the group of marked-points-
preserving automorphisms for a smooth algebraic curve satisfying 2 − 2g0 − r < 0 is
finite. On the other hand, every algebraic curve with 2 − 2g0 − r ≥ 0 has an infinite
group of marked-points-preserving automorphisms, which makes it impossible to define
the moduli spacesM0,0,M0,1,M0,2, andM1,0 as orbifolds. The difficulty with viewing
moduli spacesMg0,r only as sets is easily observed in the following example: as we have
seen, a genus-two curve is uniquely defining by six distinct unordered points on a rational
curve, i.e., its Weierstrass points. Thus, we have – on the level of sets –M2,0 =M0,6/S6

where S6 is the symmetric group in six elements. However, any meaningful notion of
moduli space should distinguishM2,0 andM0,6/S6 since every genus-two curve carries
an additional automorphism, i.e., the hyperelliptic involution, that the genus-zero curve
with six marked points does not have.

The setMg0,r with 2 − 2g0 − r < 0 can be endowed with the structure of a smooth
complex 3g0 − 3 + r-dimensional orbifold, that is, Mg0,r can be covered by a family
of compatible charts such that the stabilizer of any point in Mg0,r is the automorphism
group of the corresponding algebraic curves of genus g0 with r marked points. In the
aforementioned example, the moduli spaces M2,0 and M0,6/S6, though equal as sets,
then have different orbifold structures, and as orbifolds are isomorphic only up to a Z/2Z
action. This is based on the following theorem:

Theorem 19. Given any smooth projective genus-g0 curve C with r marked points, and
finite automorphism group G, there exists an open, bounded, simply connected domain
U ⊂ C3g0−3+r, a family p : C′ → U of smooth projective genus-g0 curves with r marked
points, and an action of the group G on C′ commuting with p, satisfying the following
conditions: (1) the central fiber C′0 over 0 ∈ U is isomorphic to C , i.e., C′0 ∼= C, (2) the
action ofG preserves C′0 and coincides with the natural action ofG on C, and (3) any other
family of smooth projective genus-g0 curves with r marked points and central fiber C is the
pull-back of the family p : C′t → U (after suitable restriction).

In other words,Mg0,r is a smooth, complex 3g0 − 3 + r-dimensional orbifold and is
covered by charts of the form U/G such that the stabilizer of [C] ∈Mg0,r is isomorphic to
the symmetry group of the surface C′. Moreover, the theorem also yields the construction
a second smooth orbifold Ng0,r that is covered by (suitable subdivisions of) the open sets
{C′}, and an induced orbifold morphism p : Ng0,r → Mg0,r between them, called the
universal curve over Mg0,r. The fibers of the universal curve are smooth, projective
genus-g0 curves with r marked points, such that each curve appears exactly once among
the fibers.
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The moduli spaceMg0,r is, in general, not compact. We now compactify it by adding
new points that correspond to so-called stable curves. A curve singularity (C, p) is called
a node if locally the singularity P ∈ C is isomorphic to the plane curve singularity xy = 0.
Thus, we think of the neighborhood of a node as isomorphic to two discs with identified
centers. A curve C is called nodal if the only singularities of C are nodes. There are two
different ways of desingularizing curves. In our situation, a node can be resolved by re-
placing the two discs with identified centers that form its neighborhood by a cylinder. On
the other hand, we say that a node is normalized if the two discs with identified centers
are unglued, i.e., replaced by disjoint discs. The concept of normalization is based on the
algebraic construction of the normalization of the coordinate ring of C. However, given any
affine variety X , one can always construct the normalization Xν along with a normaliza-
tion morphism ν : Xν → X explicitly. To do so, one constructs the normalization for each
affine open chart of X , and shows that they glue together. In fact, in the case of a curve,
the integral closure of the coordinate ring inside the function field can entirely be studied
locally, since the integral closure of the coordinate ring of an algebraic curve is broken
only at singular points, i.e., in our situation the nodes. In this way, the normalization of a
nodal curve is the curve obtained by normalizing all its nodes Pi ∈ C. It is smooth, but
not necessarily connected. The arithmetic genus of a nodal curve is the genus of the curve
obtained by resolving all its nodes. We make the following:

Definition 3. A stable curve C with r marked points is a connected, complete, projective
curve of arithmetic genus g0 satisfying the following conditions: (1) the only singulari-
ties of C are nodes, i.e., the curve is nodal, (2) the marked points are distinct and do not
coincide with any nodes, (3) the curve C has a finite number of marked-points-preserving
automorphisms.

To be able to check the conditions of this definition, in particular reformulate condition
(3) in a way that is checked easily, one uses the dualizing sheaf of C. If C is a nodal
connected curve of arithmetic genus g0, the dualizing sheaf ωC1 is an invertible sheaf of
degree 2g0 − 2 and h0(C, ωC) = g0. It can be described explicitly: let C be a connected
curve of arithmetic genus g0 with just one node at P ∈ C and ν : Cν → C the normalization
with {r, s} = ν−1(P ). Then, ωC is the sheaf that associates to any open subset V ⊂
C the rational differentials η on ν−1(V ) having at worst simple poles at r, s such that
Resr(η) + Ress(η) = 0. For a connected, complete, nodal curve (with nodes {Pi}) of
arithmetic genus g0 ≥ 2 the following three conditions are equivalent:

(1) ωC(
∑
Pi) is ample,

(2) If Cνi is a genus-zero component of the normalization of C, then Cνi has at least
three points mapped by ν to nodes or marked points of C.

(3) The group of marked points preserving automorphisms of C is finite.
An immediate consequence is the following: if Cνi are the connected, genus-gi components
of the normalization of C, and ni the number of marked points plus the number of preim-
ages of nodes on the component Cνi , then Condition (3) in the above definition is satisfied
if and only if 2− 2gi − ni < 0 for all i.

The following theorem is essential:

Theorem 20. There exist compact, smooth, complex orbifoldsMg0,r of dimension 3g0 −
3 + r andN g0,r of dimension 3g0 − 2 + r, and an orbifold morphism p̄ : N g0,r →Mg0,r

1For a normal projective variety C, the dualizing sheaf exists and it is in fact the canonical sheaf, i.e., ωC =

OC(KC) where KC is a canonical divisor.
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such that (1) Mg0,r ⊂ Mg0,r and Ng0,r ⊂ N g0,r are open dense sub-orbifolds, (2) p̄
restricts to p on Mg0,r, p̄

−1(Mg0,r) = N g0,r, and the fibers of p̄ are stable curves of
arithmetic genus g0 with r marked points, (3) each stable curve is isomorphic to exactly
one fiber of p̄, and (4) the stabilizer of a point [C] ∈ Mg0,r is the automorphism group of
the corresponding stable curve C.

We make the following:

Definition 4. The space Mg0,r is called the Deligne-Mumford compactification of the
moduli spaceMg0,r. The family p̄ : N g0,r → Mg0,r is called the universal curve over
Mg0,r.

Notice thatMg0,r is a smooth and compact orbifold. The setMg0,r\Mg0,r is called
the boundary ofMg0,r and parametrizes singular stable curves. The boundary is a sub-
orbifold of codimension 1, whence given by a divisor. A generic point of the boundary
is a stable curve with one node. If a point of the boundary corresponds to a stable curve
C with k nodes, that means that there are k local components of the boundary that inter-
sect transversally, and this is the only way local components can intersect. Therefore, the
boundary is a so-called normal crossing divisor.

6.2. Curves with automorphisms in the moduli space. Fix the genus g ≥ 2. Consider
the following problem.

Problem 5. Could one list all groups which occur as a full automorphism group of a genus
g smooth, irreducible algebraic curve C defined over a field k of characteristic char (k) =
p ≥ 0?

In the previous section we were able to do this for all superelliptic curves for all genera
and char k 6= 2. The case of char k = 2 is more technical and we avoid it here. However,
there are plenty of curves which are not superelliptic. The generic curve of genus three,
for example, has equation isomorphic to a ternary quartic and is not a superelliptic curve.
The classification of automorphism groups is still an open problem for char k = p > 0,
but it can be done in char k = 0 due to results of the last two decades by Breuer, Magaard,
Shaska, Shpectorov, Völklein. We summarize these results briefly below.

Recall that a group G acts faithfully on a genus g curve if and only if it has a genus
g generating system; see [75]. For g up to 48, all such groups and the signatures of all
their genus-g generating systems have been listed by Breuer [19]. More precisely, for each
genus g ≤ 48, he produced a list containing all signature-group pairs in genus g, i.e.,
pairs consisting of a group G together with the signature of a genus g generating system of
G.

If G acts on Xg then so does each subgroup of G. This shows that Breuer’s lists have to
be long, and contain some redundancies. Th work in [75] eliminates those signature-group
pairs that do not yield the full automorphism group of a curve. It turns out that the larger
g is, the larger the ratio is of entries in Breuer’s lists that do occur as full automorphism
group in genus g. This can already be seen from the fact that if a signature-group pair
does not yield the full automorphism group of a curve, then its δ-invariant (dimension of
corresponding locus inMg) is at most 3.

For small genus g, a relatively large portion of those groups do not occur as full auto-
morphism group in genus g. Among those that do occur, we distinguish those that occur
for a particularly simple class of curves: we call a group homocyclic if it is a direct product
of isomorphic cyclic groups.
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6.3. Ramification type and signature of a G-curve. Fix an integer g ≥ 2 and a finite
group G. Let C1, . . . , Cr be conjugacy classes 6= {1} of G. Let C = (C1, . . . , Cr) be
an unordered tuple, where repetitions are allowed. We also allow r to be zero, in which
case C is empty. Consider pairs (X,µ), where X is a curve and µ : G → Aut(X) is
an injective homomorphism. We will often suppress µ and just say X is a curve with G-
action, or a G-curve, for short. Two G-curves X and X ′ are called equivalent if there is a
G-equivariant isomorphism X → X ′.

We say a G-curve X is of ramification type (g,G,C) if the following holds: the curve
X has genus g, the points of the quotient X/G that are ramified in the cover X → X/G
can be labelled as p1, . . . , pr such that Ci is the conjugacy class in G of distinguished
inertia group generators over pi (for i = 1, . . . , r). (Distinguished inertia group generator
means the generator acts in the tangent space as multiplication by exp(2π

√
−1/e), where

e is the ramification index). For short, we will just say X is of type (g,G,C).
If X is a G-curve of type (g,G,C) then the genus g0 of X/G is given by the Riemann-

Hurwitz formula

2 (g − 1)

|G|
= 2 (g0 − 1) +

r∑
i=1

(
1− 1

ci

)
,

where ci is the order of the elements in Ci. Note that g0 (the orbit genus) depends only on
g, |G| and the signature c = (c1, . . . , cr) of the G-curve X .

6.4. Hurwitz spaces and moduli of curves. Define H = H(g,G,C) to be the set of
equivalence classes of G-curves of type (g,G,C). By covering space theory (or the the-
ory of Fuchsian groups), H is non-empty if and only if G can be generated by elements
α1, β1, . . . , αg0 , βg0 , γ1, . . . , γr with γi ∈ Ci and

(2) .
∏
j

[αj , βj ]
∏
i

γi = 1

Here [α, β] = α−1β−1αβ. Consider the map

Φ : H → Mg ,

obtained by forgetting the G-action, and the map Ψ : H → Mg0,r mapping (the class
of) a G-curve X to the class of the quotient curve X/G together with the (unordered) set
of branch points p1, . . . , pr. IfH 6= ∅ then Ψ is surjective and has finite fibers, by covering
space theory. Also Φ has finite fibers, since the automorphism group of a curve of genus
≥ 2 is finite.

The setH carries the structure of a quasi-projective variety (over C) such that the maps
Φ and Ψ are finite morphisms. If H 6= ∅ then all components of H map surjectively to
Mg0,r (through a finite map), hence they all have the same dimension

δ(g,G,C) := dim Mg0,r = 3g0 − 3 + r.

Lemma 16. LetM(g,G,C) denote the image of Φ, i.e., the locus of genus g curves ad-
mitting aG-action of type (g,G,C). If this locus is non-empty then each of its components
has dimension δ(g,G,C).

6.5. Restriction to a subgroup. Let H be a subgroup of G. Then each G-curve can be
viewed as an H-curve by restriction of action. Let X be a G-curve of type (g,G,C).
Then the resulting H-curve is of type (g,H,∆), where ∆ is obtained as follows: Choose
γi ∈ Ci and let σi,1, σi,2, . . . be a set of representatives for the double cosets < γi > σH

in G. Let mij be the smallest integer ≥ 1 such that the element σ−1
ij γ

mij
i σij lies in H , and
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let Dij be the conjugacy class of this element in H . Then ∆ is the tuple consisting of all
Dij with Dij 6= {1}. (More precisely, the tuple ∆ is indexed by the set of possible pairs
(i, j), and its (i, j)-entry is Dij .) The definition of ∆ does not depend on the choice of the
γi and σij . Note that the signature of the H-curve depends on the type of the G-curve, not
only on its signature. We have

M(g,G,C) ⊂ M(g,H,∆) .

Hence, their dimensions satisfy δ(g,G,C) ≤ δ(g,H,∆). If this is a strict inequality
then the complement of the closure ofM(g,G,C) inM(g,H,∆) is open and dense. In
particular, it is not true that every H-curve of type (g,H,∆) is the restriction of a G-curve
of type (g,G,C).

5 C2

4 C2

��

3 V4 V4

2 C3
2 C4 C3

��

S3 D8

1 C2 × C4 D12 16 C6 16 S4

0 C14 24 32 48 C9 48 96 L3(2)

FIGURE 1. Poset of Hurwitz loci forM3.

6.5.1. The moduli spaceM3. In [75] the inclusions among the loci inMg with different
automorphism groups and their dimension were determined. We illustrate the inclusion and
dimensions of the different loci in Fig. 1 for g = 3. The red cases represent hyperelliptic
loci, and the yellow ones are superelliptic (non-hyperelliptic). Notice that from 23 cases
only 6 are non-hyperelliptic.

6.5.2. The moduli space M4. In Table 3 we present all automorphism groups and their
signatures g = 4. Each one of the families above is an irreducible algebraic locus inM4.
Notice that there are 41 cases from which only 13 are non-superelliptic (colored in blue).
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# dim G ID sig type subcases
1 0 S5 (120,34) 0-(2, 4, 5) 1
2 0 C3 × S4 (72,42) 0-(2, 3, 12) 3
3 0 (72,40) 0-(2, 4, 6) 4
4 0 V10 (40,8) 0-(2, 4, 10) 7
5 0 C6 × S3 (36,12) 0-(2, 6, 6) 10
6 0 U8 (32,19) 0-(2, 4, 16) 16
7 0 SL2(3) (24,3) 0-(3, 4, 6) 20
8 0 C18 (18,2) 0-(2, 9, 18) 27
9 0 C15 (15,1) 0-(3, 5, 15) 38
10 0 C12 (12,2) 0-(4, 6, 12) 45
11 0 C10 (10,2) 0-(5, 10, 10) 51
12 1 S2

3 (36,10) 0-(2, 2, 2, 3) 12 3
13 1 S4 (24,12) 0-(2, 2, 2, 4) 18 1, 2
14 1 C2 ×D5 (20,4) 0-(2, 2, 2, 5) 21 4
15 1 C3 × S3 (18,3) 0-(2, 2, 3, 3) 30 2, 5
16 1 D8 (16,7) 0-(2, 2, 2, 8) 35 6
17 1 C2 × C6 (12,5) 0-(2, 2, 3, 6) 46 2, 5
18 1 C2 × S3 (12,4) 0-(2, 2, 3, 6) 41 3
19 1 A4 (12,3) 0-(2, 3, 3, 3) 43 2
20 1 D10 (10,1) 0-(2, 2, 5, 5) 49 1
21 1 Q8 (8,4) 0-(2, 4, 4, 4) 59 6, 7
22 1 C6 (6,2) 0-(2, 6, 6, 6) 66 5, 10
23 1 C5 (5,1) 0-(5, 5, 5, 5) 69 9, 11
24 2 D6 (12,4) 0-(25) 40 1, 5, 12
25 2 D4 (8,3) 0-(24, 4) 57 3, 13
26 2 D4 (8,3) 0-(24, 4) 56 4, 16
27 2 C6 (6,2) 0-(23, 3, 6) 64 7, 8
28 2 C6 (6,2) 0-(22, 33) 65 15, 17
29 2 S3 (6,1) 0-(22, 33) 62 12, 18
30 2 C4 (4,1) 0-(2, 44) 77 10
31 3 S3 (6,1) 0-(26) 61 13, 15, 24
32 3 V4 (4,2) 1-(2, 2, 2) 72 18, 19, 25
33 3 C4 (4,1) 0-(24, 42) 76 21, 26
34 3 C3 (3,1) 0-(36) 80 9, 28
35 3 C3 (3,1) 0-(36) 81 29
36 3 C3 (3,1) 1-(3, 3, 3) 79 15, 19, 22, 27
37 4 V4 (4,2) 0-(27) 73 14, 26
38 4 V4 (4,2) 0-(27) 74 17, 24, 25
39 5 C2 (2,1) 2-(2, 2) 82 11, 20, 29, 32, 37, 38
40 6 C2 (2,1) 1-(26) 83 22, 28, 30, 31, 38
41 7 C2 (2,1) 0-(210) 84 27, 33, 37

Table 3: Hurwitz loci of genus 4 curves
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In [75] all large automorphism groups, i.e., |G| > 4(g − 1) are displayed for all genera
g ≤ 10. It would be interesting to have some bounds on the ratio between non-superelliptic
cases over the total number of cases. At least for the hyperelliptic cases we can get some
estimates.

For a fixed g we denote byNg the number of groups that occur as automorphism groups
of genus g curves. We would like to determine what happens to Ng as g increases.

Let n ∈ Z such that n = pα1
1 · · · pαss . Denote by d(n) the number of divisors of n. It

is well known that d(n) =
∏s
i=1(αi + 1). Further, we denote by d̄(n) the number of even

divisors of n. We have the following lemma:

Lemma 17. Let g be fixed. The number of automorphism groups that can occur as auto-
morphism groups Aut(Cg) of a genus-g hyperelliptic curves is given by the following:

i) if Aut(Cg) ∼= Cn then n1 = d(g + 1) + d(2g + 1) + d(2g)− 1

ii) if Aut(Cg) ∼= Dn then n2 = 3d̄(g + 1) + 2d̄(g) + d(g)− 2

iii) if Aut(Cg) ∼= A4 and g > 6 then n3 = 1

iv) if Aut(Cg) ∼= S4 then n4 = 1 or 0.
v) if Aut(Cg) ∼= A5 then n5 = 1 or 0.

Proof. The proof is elementary and we skip the details. �

6.5.3. Gonality of curves. Let C be a curve defined over k and η : C → P1 a degree n
cover. We assume that C has a k-rational point P∞ and hence a prime divisor p∞ of degree
1. The gonality γC of C is defined as

γC = min
{

deg (η) : C → P1
}

= min {[k(C) : k(x)] | x ∈ k(C)} .
For x ∈ k(C)∗, define the pole divisor (x)∞ by

(x)∞ =
∑

p∈ΣC(k)

max(0,−wp(x)) · p.

By the property of conorms of divisors, we obtain deg (x)∞ = [k(C) : k(x)] if x /∈ k.
Thus, we have

γC = min {deg (x)∞ | x ∈ k(C) \ k} .

Proposition 9. For γC ≥ 2 we have γC ≤ g.

The following statement strengthens the proposition.

Corollary 10. For curves C of genus ≥ 2 with prime divisor p∞ of degree 1 there exists a
cover

η : C → P1

of deg (η) = n ≤ gC , such that p∞ is ramified of order n and so the point P∞ ∈ C(k)
attached to p∞ is the only point on C lying over the point [0 : 1] ∈ P1.

In general, the inequality in the proposition is not sharp, but of size g/2; see [32] for
details. Curves with smaller gonality are special for various reasons.

7. EQUATIONS OF CURVES WITH PRESCRIBED AUTOMORPHISM GROUP

Determining an equation for a family of curves with fixed automorphism group G is an
open problem. Celebrated special solutions are the cases of the Klein curve, the Friecke or
Friecke-MacBeath curve. In general, the following remains a difficult problem:

Problem 6. Given an automorphism group G, determine an equation of a curve C such
that Aut(C) ∼= G.
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We know the solution to the above problem for genus g ≤ 3, but it is an open problem
even for g = 4. For example, it is unknown what the corresponding equations for all cases
in Table 3 are. The only families of curves which we know how to determine an equation
are the superelliptic curves.

The method is almost identical to that of hyperelliptic curves, but now we have more
choices for the reduced automorphism group G. We follow closely the terminology and
notation of [93].

7.1. Equations of superelliptic curves. Let δ be given in Table 2 and M , Λ, Q, B, ∆, Θ
and Ω are as follows:

M =

δ∏
i=1

(
x24 + λix

20 + (759− 4λi)x
16 + 2(3λi + 1228)x12

+ (759− 4λi)x
8 + λix

4 + 1
)

Λ =

δ∏
i=1

(
−x60 + (684− λi)x55 − (55λi + 157434)x50 − (1205λi − 12527460)x45

− (13090λi + 77460495)x40 + (130689144− 69585λi)x
35

+ (33211924− 134761λi)x
30 + (69585λi − 130689144)x25

− (13090λi + 77460495)x20 − (12527460− 1205λi)x
15

−(157434 + 55λi)x
10 + (λi − 684)x5 − 1

)
Q =x30 + 522x25 − 10005x20 − 10005x10 − 522x5 + 1

B =

δ∏
i=1

∏
a∈Ht

((x+ a)− λi)

Θ =

δ∏
i=1

Gλi(x), where Gλi =

x · p
t−1
m∏
j=1

(xm − bj)


m

− λi

∆ =

δ∏
i=1

((
(xq − x)q−1 + 1

) q+1
2 − λi(xq − x)

q(q−1)
2

)

Ω =
δ∏
i=1

(
((xq − x)q−1 + 1)q+1 − λi(xq − x)q(q−1)

)
Then we have the following result:

Theorem 21. [93] Let Cg be an algebraic curve of genus g ≥ 2 defined over an alge-
braically closed field k, G its automorphism group over k, and Cn a cyclic normal sub-
group ofG such that g(XCn

g ) = 0. Then, the equation for Cg falls into one of the following
cases as in Table 4.

Each case in the Table 4 correspond to a δ-dimensional family, where δ can be found
in Table 2. Moreover, our parameterizations are exact in the sense that the number of
parameters in each case equals the dimension. It would be interesting to find invariants
classifying isomorphism classes of superelliptic curves, and these families of curves in
particular and to find equations in the moduli space of curves to determine these loci.
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# Ḡ yn = f(x)

1 xmδ + a1x
m(δ−1) + · · ·+ aδx

m + 1

2 Cm xmδ + a1x
m(δ−1) + · · ·+ aδx

m + 1

3 x(xmδ + a1x
m(δ−1) + · · ·+ aδx

m + 1)

4 F (x) :=
∏δ
i=1(x2m + λix

m + 1)
5 (xm − 1) · F (x)
6 x · F (x)
7 D2m (x2m − 1) · F (x)
8 x(xm − 1) · F (x)
9 x(x2m − 1) · F (x)

10 G(x) :=
∏δ
i=1(x12 − λix10 − 33x8 + 2λix

6 − 33x4 − λix2 + 1)

11 (x4 + 2i
√

3x2 + 1) ·G(x)
12 A4 (x8 + 14x4 + 1) ·G(x)
13 x(x4 − 1) ·G(x)

14 x(x4 − 1)(x4 + 2i
√

3x2 + 1) ·G(x)
15 x(x4 − 1)(x8 + 14x4 + 1) ·G(x)

16 M(x)
17

(
x8 + 14x4 + 1

)
·M(x)

18 x(x4 − 1) ·M(x)
19

(
x8 + 14x4 + 1

)
· x(x4 − 1) ·M(x)

20 S4

(
x12 − 33x8 − 33x4 + 1

)
·M(x)

21
(
x12 − 33x8 − 33x4 + 1

)
·
(
x8 + 14x4 + 1

)
·M(x)

22
(
x12 − 33x8 − 33x4 + 1

)
· x(x4 − 1) ·M(x)

23
(
x12 − 33x8 − 33x4 + 1

)
·
(
x8 + 14x4 + 1

)
· x(x4 − 1)M(x)

24 Λ(x)
25 x(x10 + 11x5 − 1) · Λ(x)
26 (x20 − 228x15 + 494x10 + 228x5 + 1)(x(x10 + 11x5 − 1)) · Λ(x)
27 (x20 − 228x15 + 494x10 + 228x5 + 1) · Λ(x)
28 A5 Q(x) · Λ(x)
29 x(x10 + 11x5 − 1).ψ(x) · Λ(x)
30 (x20 − 228x15 + 494x10 + 228x5 + 1) · ψ(x) · Λ(x)
31 (x20 − 228x15 + 494x10 + 228x5 + 1)(x(x10 + 11x5 − 1)) · ψ(x) · Λ(x)

32 U B(x)
33 B(x)

34 Θ(x)

35 Km x
∏ pt−1

m
j=1 (xm − bj) ·Θ(x)

36 Θ(x)

37 x
∏ pt−1

m
j=1 (xm − bj) ·Θ(x)

38 ∆(x)
39 PSL2(q) ((xq − x)q−1 + 1) ·∆(x)
40 (xq − x) ·∆(x)
41 (xq − x)((xq − x)q−1 + 1) ·∆(x)

42 Ω(x)
43 PGL2(q) ((xq − x)q−1 + 1) · Ω(x)
44 (xq − x) · Ω(x)
45 (xq − x)((xq − x)q−1 + 1) · Ω(x)

Table 4: Superelliptic curves according to the automorphism group
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8. BINARY FORMS AND THEIR INVARIANTS

A superelliptic curve Cg defined over an algebraically closed field k is given by a pro-
jective equation of the form

(11) C : ynzd−n = f(x, z),

for some degree d binary form f(x, z). Let us assume that

ynzd−n = f(x, z) =

s∏
i=1

(x− αiz)di , 0 < di < d.

We have that
∑s
i=1 di = d. A degree d ≥ 2 binary form f(x, z) is called semistable if it

has no root of multiplicity > d
2 . The only places where π : Cg → P1 ramifies correspond

to the points x = αi. We denote such places by Q1, . . . , Qs and denote the set of these
places by B := {Q1, . . . , Qs}. The ramification indices are e(Qi) = n

(n,di)
. Hence,

every set B determines a genus g superelliptic curve Cg . However, the correspondence
between the sets B and the isomorphism classes of Cg is not a one-to-one correspondence.
Obviously the set of roots of f(x) does not determine uniquely the isomorphism class
of Cg since every coordinate change in x would change the set of these roots. Instead,
the isomorphism classes are classified by the invariants of binary forms. There is a huge
amount of literature on classical invariant theory from XIX-century mathematics which
has received more attention in the last few decades due to improved computational tools.

A binary form of degree d is a homogeneous polynomial f(X,Y ) of degree d in two
variables over k. Let Vd be the k-vector space of binary forms of degree d. The group
GL2(k) of invertible 2 × 2 matrices over k acts on Vd by coordinate change. Any genus
g ≥ 2 superelliptic curve over k has a projective equation of the form Eq. (11), where f is
degree d a binary form of non-zero discriminant. Two curves are isomorphic if and only if
the corresponding binary forms are conjugate under GL2(k). Therefore the moduli space
of superelliptic curves is the affine variety whose coordinate ring is the ring of GL2(k)-
invariants in the coordinate ring of the set of elements of Vd with non-zero discriminant.

Generators for this and similar invariant rings in lower degree were constructed by Cleb-
sch, Bolza and others in the last century using complicated calculations. For the case of
sextics, Igusa [60] extended this to algebraically closed fields of any characteristic using
techniques of modular forms and algebraic geometry. In [67] Igusa’s result is proved in an
elementary way using methods of geometric reductivity.

Hilbert [55] developed some general, purely algebraic tools in invariant theory. Com-
bined with the linear reductivity of GL2(k) in characteristic 0, this permits a more con-
ceptual proof of the results of Clebsch [24] and Bolza [18]. After Igusa’s paper appeared,
the concept of geometric reductivity was developed by Mumford [82], Haboush [48] and
others. Haboush’s theorem states that for any semisimple algebraic group G over k, and
for any linear representation of G on a k-vector space V , given v ∈ V with v 6= 0 that is
fixed by the action of G, there is a G-invariant polynomial F on V , without constant term,
such that F (v) 6= 0. The polynomial F can be taken to be homogeneous, and if the charac-
teristic is p > 0 the degree of the polynomial can be taken to be a power of p. In particular,
it was proved that reductive algebraic groups in any characteristic are geometrically reduc-
tive. This allows the application of Hilbert’s methods in any characteristic. For example,
Hilbert’s finiteness theorem was extended to any characteristic by Nagata [86]. Here, we
follow the same approach for binary sextics and octavics. The proofs are elementary in
characteristic 0, and extend to characteristic p > 5 by quoting the respective results using
geometric reductivity.
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8.1. Invariants of Binary Forms. Let k denote an algebraically closed field.

8.1.1. Action of GL2(k) on binary forms. Let k [X,Y ] be the polynomial ring in two
variables and let Vd denote the d + 1-dimensional subspace of k [X,Y ] consisting of ho-
mogeneous polynomials.

(12) f(X,Y ) = a0X
d + a1X

d−1Y + · · ·+ adY
d

of degree d. Elements in Vd are called binary forms of degree d. We let GL2(k) act as a
group of automorphisms on k [X,Y ] as follows: if

g =

(
a b
c d

)
∈ GL2(k)

then

(13) g(X) = aX + bY and g(Y ) = cX + dY

This action of GL2(k) leaves Vd invariant and acts irreducibly on Vd.

Remark 4. It is well known that SL2(k) leaves a bilinear form (unique up to scalar
multiples) on Vd invariant. This form is symmetric if d is even and skew symmetric if d is
odd.

Let A0, A1, . . . , Ad be coordinate functions on Vd. Then the coordinate ring of Vd
can be identified with k [A0, . . . , Ad]. For I ∈ k [A0, . . . , Ad] and g ∈ GL2(k), define
Ig ∈ k [A0, . . . , Ad] as follows

(14) Ig (f) = I (g(f))

for all f ∈ Vd. Then Igh = (Ig)h and (14) defines an action of GL2(k) on k [A0, . . . , Ad].

Definition 6. Let Rd be the ring of SL2(k) invariants in k [A0, . . . , Ad], i.e., the ring of
all I ∈ k [A0, . . . ,d ] with Ig = I for all g ∈ SL2(k).

Note that if I is an invariant, so are all its homogeneous components. So Rd is graded
by the usual degree function on k [A0, . . . , Ad].

Since k is algebraically closed, the binary form f(X,Y ) in (12) can be factored as

(15) f(X,Y ) = (y1X − x1Y ) · · · (ydX − xdY ) =
∏

1≤i≤d

det
((

X xi
Y yi

))
The points with homogeneous coordinates (xi, yi) ∈ P1 are called the roots of the binary
form (12). Thus for g ∈ GL2(k) we have

g (f(X,Y )) = (det (g))d(y
′

1X − x
′

1Y ) · · · (y
′

dX − x
′

dY ),

where

(16)
(
x
′

i

y
′

i

)
= g−1

(
xi
yi

)
.

The null cone Nd of Vd is the zero set of all homogeneous elements in Rd of positive
degree.

Lemma 18. Let char (k) = 0 and Ωs be the subspace of k [A0, . . . , Ad] consisting of
homogeneous elements of degree s. Then there is a k-linear map

R : k [A0, . . . , Ad]→ Rd,
with the following properties:
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(a) R(Ωs) ⊆ Ωs for all s
(b) R(I) = I for all I ∈ Rd
(c) R(g(f)) = R(f) for all f ∈ k [A0, . . . , Ad]

Proof. Ωs is a polynomial module of degree s for SL2(k). Since SL2(k) is linearly re-
ductive in char (k) = 0, there exists a SL2(k)-invariant subspace Λs of Ωs such that Ωs =
(Ωs ∩ Rd)

⊕
Λs. Define R : k [A0, . . . , Ad] → Rd as R(Λs) = 0 and R|Ωs∩Rd = id.

Then R is k-linear and the rest of the proof is clear from the definition of R. �

The map R is called the Reynold’s operator.

Lemma 19. Suppose char (k) = 0. Then every maximal ideal in Rd is contained in a
maximal ideal of k [A0, . . . , Ad].

Proof. If I is a maximal ideal inRd which generates the unit ideal of k [A0, . . . , Ad], then
there exist m1, . . . ,mt ∈ I and f1, f2, . . . , ft ∈ k [A0, . . . , Ad] such that

1 = m1f1 + · · ·+mtft

Applying the Reynold’s operator to the above equation we get

1 = m1R(f1) + · · ·+mtR(ft)

But R(fi) ∈ Rd for all i. This implies 1 ∈ I, a contradiction. �

The following is known as the Hilbert’s Finiteness Theorem.

Theorem 22. Suppose char (k) = 0. ThenRd is finitely generated over k.

Proof. Let I0 be the ideal in k [A0, . . . , Ad] generated by all homogeneous invariants
of positive degree. Because k [A0, . . . , Ad] is Noetherian, there exist finitely many ho-
mogeneous elements J1, . . . , Jr in Rd such that I0 = (J1, . . . , Jr). We prove Rd =
k [J1, . . . , Jr]. Let J ∈ Rd be homogeneous of degree d. We prove J ∈ k [J1, . . . , Jr]
using induction on d. If d = 0, then J ∈ k ⊂ k [J1, . . . , Jr]. If d > 0, then

(17) J = f1 J1 + · · ·+ fr Jr

with fi ∈ k [A0, . . . , Ad] homogeneous and deg(fi) < d for all i. Applying the Reynold’s
operator to (17) we have

J = R(f1)J1 + · · ·+R(fr)Jr

then by Lemma 1 R(fi) is a homogeneous element in Rd with deg(R(fi)) < d for all i
and hence by induction we have R(fi) ∈ k [J1, . . . , Jr] for all i. Thus J ∈ k [J1, . . . , Jr].

�

If k is of arbitrary characteristic, then SL2(k) is geometrically reductive, which is a
weakening of linear reductivity; see Haboush [48]. It suffices to prove Hilbert’s finite-
ness theorem in any characteristic; see Nagata [86]. The following theorem is also due to
Hilbert.

Theorem 23. Let I1, I2, . . . , Is be homogeneous elements in Rd whose common zero set
equals the null cone Nd. ThenRd is finitely generated as a module over k [I1, . . . , Is].

Proof. Consider first the case char (k) = 0. By Thm. 22 we haveRd = k [J1, J2, . . . , Jr]
for some homogeneous invariants J1, . . . , Jr. Let I0 be the maximal ideal inRd generated
by all homogeneous elements in Rd of positive degree. Then the theorem follows if I1,
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. . . , Is generate an ideal I in Rd with rad(I) = I0. For if this is the case, we have an
integer q such that

(18) Jqi ∈ I, for all i

Set

S := {J i11 J
i2
2 . . . J irr | 0 ≤ i1, . . . , ir < q}.

LetM be the k [I1, . . . Is]-submodule inRd generated by S. We proveRd =M. Let J ∈
Rd be homogeneous. Then J = J

′
+ J

′′
where J

′ ∈ M, J
′′

is a k-linear combination
of J i11 J

i2
2 . . . J irr with at least one iν ≥ q and deg(J) = deg(J

′
) = deg(J

′′
). Hence (18)

implies J
′′ ∈ I and so we have

J
′′

= f1 I1 + · · ·+ fs Is

where fi ∈ Rd for all i. Then

deg (fi) < deg (J
′′
) = deg (J),

for all i. Now by induction on degree of J we may assume fi ∈ M for all i. This
implies J

′′ ∈ M and hence J ∈ M. ThereforeM = Rd. So it only remains to prove
rad(I) = I0. This follows from Hilbert’s Nullstellensatz and the following claim.

Claim: I0 is the only maximal ideal containing I1, . . . , Is.

Suppose I1 is a maximal ideal in Rd with I1, . . . , Is ∈ I1. Then from Lemma 2
we know there exists a maximal ideal J of k [A0, . . . , Ad] with I1 ⊂ J . The point in
Vd corresponding to J lies on the null cone Nd because I1, . . . , Is vanish on this point.
Therefore I0 ⊂ J , by definition of Nd. Therefore J ∩ Rd contains both the maximal
ideals I1 and I0. Hence, I1 = J ∩Rd = I0.

Next we consider the case char (k) = p > 0. The same proof works if Lem. 19 above
holds. Geometrically this means the morphism π : Vd → Vd // SL2(k) corresponding
to the inclusion Rd ⊂ k [A0, . . . , Ad] is surjective. Here Vd // SL2(k) denotes the affine
variety corresponding to the ringRd and is called the categorical quotient. π is surjective
because SL2(k) is geometrically reductive. The proof is by reduction modulo p, see Geyer
[40]. �

8.1.2. Symbolic method. We will use the symbolic method of classical theory to construct
covariants of binary forms. First we recall some facts about the symbolic notation. Let

f(X,Y ) :=

n∑
i=0

(
n
i

)
aiX

n−i Y i, and g(X,Y ) :=

m∑
i=0

(
m
i

)
biX

n−i Y i

be binary forms of degree n and m respectively. We define the r-transvection

(f, g)r :=
(m− r)! (n− r)!

n!m!

r∑
k=0

(−1)k
(
r
k

)
· ∂rf

∂Xr−k ∂Y k
· ∂rg

∂Xk ∂Y r−k
,

see Grace and Young [43] for details.
The following result gives relations among the invariants of binary forms and it is known

as the Gordon’s formula. It is the basis for most of the classical results on invariant theory.
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Theorem 24. Let φi, i = 0, 1, 2 be covariants of order mi and ei, ej ,mk be three non-
negative integers such that ei + ej ≤ mk, for distinct i, j, k. The following holds

∑
i

Ce1i · C
m1−e0−e2
i

Cm0+m1+1−2e2−i
i

(
(φ0 φ1)e2+1 , φ2

)e0+e1−i
=
∑
i

Ce2i · C
m2−e0−e1
i

Cm0+m2+1−2e1−i
i

(
(φ0 φ2)e1+1 , φ1

)e0+e2−i
,

(19)

where e0 = 0 or e1 + e2 = m0.

This result has been used by many XIX century mathematicians to compute algebraic
relations among invariants, most notably by Bolza for binary sextics and by Alagna for bi-
nary octavics. It provides algebraic relations among the invariants in a very similar manner
that the Frobenious identities do for theta functions of hyperelliptic curves. Whether there
exists some explicit relation among both formulas is unknown.

8.1.3. Binary sextics. Let f(x, z) be a binary sextic defined over a field k, char k = 0,
given by

(20) f(x, z) =

6∑
i=0

aix
6−izi = (z1x− x1z)(z2x− x2z) . . . (z6x− x6z)

Consider the following covariants

(21)
∆ = ((f, f)4, (f, f)4)2 , Y1 = (f, (f, f)4)4

Y2 = ((f, f)4, Y1)2 , Y3 = ((f, f)4, Y2)2

The Clebsch invariants A,B,C,D are defined as follows

(22) A = (f, f)6, B = ((f, f)4, (f, f)4)4 , C = ((f, f)4,∆)4 , D = (Y3, Y1)2 ,

see Clebsch [24] or Bolza [18, Eq. (7), (8), pg. 51] for details.

Root differences: Let f(x, z) be a binary sextic as above and set Dij :=

(
xi xj
zi zj

)
. For

τ ∈ SL2(k), we have

τ(f) = (z
′

1x− x
′

1z) . . . (z
′

6x− x
′

6z), with
(
x
′

i

z
′

i

)
= τ−1

(
xi
zi

)
.
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Clearly Dij is invariant under this action of SL2(k) on P1. Let {i, j, k, l,m, n} = {1, 2, 3,
4, 5, 6}. Treating ai as variables, we construct the following elements in the ring of invari-
antsR6

A = a20
∏

fifteen

(12)2(34)2(56)2 =
∑

i<j,k<l,m<n

D2
ijD

2
klD

2
mn

B = a40
∏
ten

(12)2(23)2(31)2(45)2(56)2(64)2 =
∑

i<j,j<k,
l<m,m<n

D2
ijD

2
jkD

2
kiD

2
lmD

2
mnD

2
nl

C = a60
∏
sixty

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2

=
∑

i<j,j<k,l<m,m<n
i<l′,j<m′,k<n′

l′,m′,n′∈{l,m,n}

D2
ijD

2
jkD

2
kiD

2
lmD

2
mnD

2
nlD

2
il
′D2

jm
′D2

kn
′

D = a100
∏
i<j

(ij)2

(23)

These invariants, sometimes called integral invariants, are defined in [60, pg. 620] where
they are denoted by A,B,C,D. Incidentally even Clebsch invariants which are defined
next are also denoted by A,B,C,D by many authors.

To quote Igusa "if we restrict to integral invariants, the discussion will break down in
characteristic 2 simply because Weierstrass points behave badly under reduction modulo
2"; see [60, pg. 621]. Next we define invariants which will work in every characteristic.

In [60, pg. 622] Igusa defined what he called basic arithmetic invariants, which are
now commonly known as Igusa invariants

J2 =
1

23
A, J4 =

1

25 · 3
(4J2

2 −B), J6 =
1

26 · 32
(8J3

2 − 160J2J4 − C), J10 =
1

212
D

While most of the current literature on genus 2 curves uses invariants A,B,C,D, which
are now most commonly labeled as I2, I4, I6, I10, Igusa went to great lengths in [60] to
define J2, J4, J6, J10 and to show that they also work in characteristic 2.

Lemma 20. J2i are homogeneous elements inR6 of degree 2i, for i = 1,2,3,5.

Lemma 21. A sextic has a root of multiplicity exactly three if and only if the basic invari-
ants take the form

(24) J2 = 3r2, J4 = 81r4, J6 = r6, J10 = 0.

for some r 6= 0.

Lemma 22. A sextic has a root of multiplicity at least four if and only if the basic invariants
vanish simultaneously.

The above lemmas are useful when we study semistable and stable genus 2 curves.

Lemma 23. R6 is finitely generated as a module over k [I2, I4, I6, I10].

Corollary 11. (Clebsch-Bolza-Igusa) Two binary sextics f and g with I10 6= 0 are
GL2(k) conjugate if and only if there exists an r 6= 0 in k such that for every i = 1,
2, 3, 5 we have

(25) I2i(f) = r2i I2i(g)
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See [67] for a proof. We will use Eq. (25) when we consider the moduli space of binary
sextics as a weighted moduli space.

8.1.4. Binary octavics. Next we will construct covariants and invariants of binary oc-
tavics. They were first constructed by van Gall who showed that there are 70 such co-
variants; see von Gall [39]. Let f(X,Y ) denotes a binary octavic as below:

(26) f(X,Y ) =

8∑
i=0

aiX
iY 8−i =

8∑
i=0

(
n
i

)
biX

iY n−i

where bi = (n−i)! i!
n! · ai, for i = 0, . . . , 8. We define the following covariants:

g = (f, f)4, k = (f, f)6, h = (k, k)2, m = (f, k)4,

n = (f, h)4, p = (g, k)4, q = (g, h)4.
(27)

Then, the following
(28)

J2 = 22 · 5 · 7 · (f, f)8, J3 =
1

3
· 24 · 52 · 73 · (f, g)8, J4 = 29 · 3 · 74 · (k, k)4,

J5 = 29 · 5 · 75 · (m, k)4, J6 = 214 · 32 · 76 · (k, h)4, J7 = 214 · 3 · 5 · 77 · (m,h)4,

J8 = 217 · 3 · 52 · 79 · (p, h)4, J9 = 219 · 32 · 5 · 79 · (n, h)4, J10 = 222 · 32 · 52 · 711(q, h)4

are SL2(k)- invariants. Notice that these invariants are scaled up to multiplication by a
constant for computational purposes only; see [103] and [100] for further details.

Lemma 24. For each binary octavic f(X,Y ), its invariants defined in Eq. (28) are prim-
itive homogeneous polynomials Ji ∈ Z[a0, . . . , a8] of degree i, for i = 2, . . . , 10. Let
f ′ = g(f), where

g =

(
a b
c d

)
∈ GL2(k),

and denote the corresponding J2, . . . , J10 of f ′ by J ′2, . . . , J
′
10. Then,

J ′i = (∆4)i Ji

where ∆ = ad− bc and i = 2, . . . , 10.

Proof. The first claim is immediate from the definition of the covariants and invariants.
Let f and f ′ be two binary octavics as in the hypothesis. One can check the result compu-
tationally. �

There are 68 invariants defined this way as discovered by van Gall [38, 39] in 1880.
Indeed, van Gall claimed 70 such invariants, but as discovered in XX-century there are
only 68 of them. In particular, J14 is the discriminant of the binary octavic. In articles in
1892 and 1896 R. Alagna determined the algebraic relations among such invariants; see
[4, 5] for details.

Next we want to show that the ring of invariants R8 is finitely generated as a module
over k[J2, . . . , J7]. First we need some auxiliary lemmas.

Lemma 25. If Ji = 0, for i = 2, . . . 7, then the f(X,Y ) has a multiple root.

Proof. Compute Ji = 0, for i = 2, . . . 7. These equations imply that

Res(f(X, 1), f ′(X, 1), X) = 0,

where f ′ is the derivative of f . This proves the lemma. �
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Theorem 25. The following hold true for any octavic.
i) An octavic has a root of multiplicity exactly four if and only if the basic invariants

take the form

J2 = 2 · r2, J3 = 22 · 3 · r3, J4 = 26 · r4, J5 = 26 · r5,

J6 = 29 · r6, J7 = 29 · r7, J8 = 211 · 32 · r8,
(29)

for some r 6= 0. Moreover, if the octavic has equation

f(x, y) = x4(ax4 + bx3y + cx2y2 + dxy3 + ey4),

then r = e.
ii) An octavic has a root of multiplicity 5 if and only if

Ji = 0, for i = 2, . . . , 8.

Remark 5. An alternative proof of the above can provided using the k-th subresultants
of f and its derivatives. Two forms have k roots in common if and only if the first k
subresultants vanish. This is equivalent to J2 = · · · = J7 = 0.

Theorem 26. R8 is finitely generated as a module over k[J2, . . . , J7].

Corollary 12. J2, . . . , J7 are algebraically independent over k becauseR8 is the coordi-
nate ring of the 5-dimensional variety V8//SL2(k).

In [100] the following theorem was proved that determines explicitly the relation among
the invariants.

Theorem 27. The invariants J2, . . . , J8 satisfy the following equation

(30) J5
8 +

I8
34 · 53

J4
8 + 2 · I16

38 · 56
J3

8 +
I24

2 · 312 · 56
J2

8 +
I32

316 · 510
J8 +

I40

22 · 320 · 512
= 0,

where I8, I16, I24, I32, I40 are expressed in terms of the coefficients in the Appendix in
[100]

We suggest the following problem.

Problem 7. Express all invariants I8, I16, I24, I32, I40 in terms of the transvectants of the
binary octavics.

We also have a similar result for superelliptic curves.

Theorem 28. Two superelliptic curvesC andC ′ in Weierstrass form, given by affine equa-
tions

C : Zn = f(X, 1) and C ′ : zn = g(X, 1)

with deg f = deg g = 8 are isomorphic over k if and only if there exists some λ ∈ k \ {0}
such that

Ji(f) = λi · Ji(g), for i = 2, . . . , 7,

and J2, . . . J8 satisfy the (30). Moreover, the isomorphism C → C ′ is given by[
X
Y

]
→M ·

[
X
Y

]
where M ∈ GL2(k) and λ = (det M)

4.

Using Thm. 27 one can build a database of superelliptic curves yn = f(x), for deg f =
8. This was done in [14] for genus 3 hyperelliptic curves.
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8.2. Discriminant of a superelliptic curve. An important invariant is the discriminant of
the binary form. In the classical way, the discriminant is defined as ∆ =

∏
i 6=j(αi − αj)2,

where α1, . . . αd are the roots of f(x, 1). It is a well-known result that it can be expressed
in terms of the transvections. For example, for binary sextics we have ∆ = J10 and for
binary octavics ∆(f) = J14.

The discriminant of a degree d binary form f(X,Z) ∈ k[X,Z] is and SL2(k)-invariant
of degree 2d− 2. For any M ∈ GL2(k) and any degree d binary form f we have

∆(fM ) = (det M)
d(d−1)

∆(f) .

The concept of a minimal discriminant is classical concept in number theory, starting with
the binary quadratics. The minimal discriminant for elliptic curves was studied by Tate
and others in the 1970-s; see [107] and generalized by Lockhart in [71] for hyperelliptic
curves. We will consider superelliptic curves with minimal discriminant or with minimal
set of invariants in Section 10.

8.3. Dihedral invariants of superelliptic curves with extra automorphisms. For curves
with extra automorphisms we have additional invariants which are simpler in form and
easier to compute. These invariants were introduced in [46] for hyperelliptic curves and
generalized in [6] for superelliptic curves. We will say that the superelliptic curve is in
normal form if and only if it is given by an equation of the form

yn = xs +

d/δ∑
i=1

aix
δ·i + 1.

To parametrize families of the superelliptic curves that admit an extra automorphism of
order δ, we determine the set of possible coefficients {as/δ−1, · · · , a1} of this normal
form up to a change of coordinate in x. The condition τ(x) = ζx, implies that τ̄ fixes the
places 0,∞. Moreover we can change the defining equation by a morphism γ ∈ PGL2(k)
of the form γ : x → mx or γ : x → m

x so that the new equation is again in normal form.
Substituting a0 = (−1)d/s

∏d/s
i=1 β

s
i , we obtain

(−1)s/δ
s/δ∏
i=1

γ(βi)
δ = 1 ,

whence ms = (−1)s/δ . Then, x is determined up to a coordinate change by the subgroup
Ds/δ generated by

τ1 : x→ ζx, τ2 : x→ 1

x
,

where ζ is a primitive s/δ-root of unity; see [46] for details. The action of Ds/δ on the
parameter space k(a1, . . . , as/δ) is given by

τ1 : ai → ζδiai, for i = 1, . . . s/δ ,

τ2 : ai → ad/δ−i, for i = 1, . . . [s/δ] .

Notice that if s/δ = 1 then the above actions are trivial, therefore the normal form deter-
mines the equivalence class. If s/δ = 2 then

τ1(a1) = −a1, τ1(a2) = a2, τ2 = 1

and the action is not dihedral but cyclic on the first vector.

Lemma 26. Assume that s/δ > 2. The fixed field k(a1, a2, · · · as/δ)Ds/δ is the same as
the function field of the variety Ln,s,δ .
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Lemma 27. Let r := s/δ > 2. The elements

ui := ar−i1 a1 + ar−ir−1ar−i, for i = 1, . . . , r

are invariants under the action of the group Ds/δ defined as above.

The elements ui are called the dihedral invariants.

Theorem 29. Let u = (u1, . . . , ur) be the r-tuple of s-invariants. Then

k(Ls,n,δ) = k(u1, . . . , ur).

9. WEIGHTED MODULI SPACES AND THEIR HEIGHTS

Another way of identifying isomorphism classes of superelliptic curves is by using
SL2(k)-invariants. From Hilbert’s basis theorem the coordinate ring of degree d binary
forms is finitely generated. Assume for example that Jq0 , . . . , Jqn are the generators. Then
two superelliptic curves C and C′ are isomorphic if and only if

Jqi(C) = λqiJqi(C′), for i = 0, . . . , n.

Hence, the isomorphism classes of superelliptic curves correspond to tuples (Jq0 , . . . , Jqn)
up to "multiplication" by a constant. But these are exactly points in the weighted projective
spaces, which motivates this section.

9.1. Introduction to weighted moduli spaces. LetK be a field and (q0, . . . , qn) ∈ Zn+1

a fixed tuple of positive integers called weights. Consider the action of K? = K \ {0} on
An+1(K) as follows

(31) λ ? (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn)

for λ ∈ K∗. The quotient of this action is called a weighted projective space and denoted
byWn

(q0,...,qn)(K). The spaceW(1,...,1)(K) is the usual projective space. The spaceWn
w

is called well-formed if

gcd(q0, . . . , q̂i, . . . , qn) = 1, for each i = 0, . . . , n.

While most of the papers on weighted projective spaces are on well-formed spaces, we do
not assume a well-formed space here. We will denote a point p ∈ Wn

w(K) by p = [x0 :
x1 : · · · : xn]. For more on weighted projective spaces one can check [10], [22], [17], [28]
among many others.

9.2. Graded rings. In projective spaces, by means of the Veronese embedding, we could
embed the same variety in different projective spaces. It turns out that we can do the same
for varieties embedded in weighted projective spaces.

As above we let k be a field. Let R = ⊕i≥0Ri be a graded ring. We further assume that
(i) R0 = k is the ground field

(ii) R is finitely generated as a ring over k
(iii) R is an integral domain
Consider the polynomial ring k[x0, . . . , xn] where each xi has weight wtxi = qi.

Every polynomial is a sum of monomials xm =
∏
xmii with weight wt(xm) =

∑
miqi.

A polynomial f is weighted homogenous of weight m if every monomial of f has weight
m.

An ideal in a graded ring I ⊂ R is called graded or weighted homogenous if I =
⊕n≥0In, where In = I ∩Rn. Hence, R = k[x0, . . . , xn]/I , where deg xi = qi and I is a
homogenous prime ideal.
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9.3. Construction of ProjR. To the prime ideal I corresponds an irreducible affine vari-
ety CX = SpecR = Va(I) ⊂ An+1.

Definition 5. A polynomial f(x0, . . . , xn) is called weighted homogenous of degree d if
it satisfies the following

f(λq0x0, λ
q1x1, . . . , λ

qnxn) = λdf(x0, . . . , xn).

Notice that the condition f(P ) = 0 is defined on the equivalence classes of (31). We
define the quotient Va(I) \ {0} by the above equivalence by Vh(I), where h stands for
homogenous. Then, we denote X = ProjR = Vh(I) ⊂ Wn

ω (k). It is a projective variety.
Notice that CX above is the affine cone over the projective variety Vh(I).

Next we will define truncated rings and determine the role that they play in the Veronese
embedding.

9.4. Truncated rings. Define the d’th truncated ring R[d] ⊂ R by

R[d] =
⊕
d|n

Rn =
⊕
i≥0

Rdi,

Hence, R[d] is a graded ring and the elements have degree di in R and degree i in R[d]. If
R is a graded ring then its subring R[d] is called the d-th Veronese subring.

For example, let R = k[x, y] with wt(x) = wt(y) = 1. Then,

R[2] =
⊕
i≥0

R2i =
⊕
i≥0

{
f(x, y) ∈ k[x, y]

∣∣∣ deg (f) = 2i
}
.

Notice that the even degree polynomials in k[x, y] are generated by x2, xy, and y2 hence
we have that

R[2] = k[x2, xy, y2] ∼= k[u, v, w]
/
〈uw − v2〉

Now, if we consider the projective spaces we have that

Proj (k[x, y]) = P(1,1) = P1

while
Proj (k[u, v, w]

/
〈uw − v2〉) = V (uw − v2) ⊆ P(1,1,1) = P2 .

Hence, we have

P1(k) = Proj(k[x, y]) ∼= Proj (k[x, y]2) ⊆ P2(k).

This is exactly the degree-2 Veronese embedding of P1(k) ↪→ P2(k). The truncation of
graded rings in this case corresponds to the degree-2 Veronese embedding.

The proof of the following lemma can be found in [28].

Lemma 28. Let R be a graded ring and d ∈ N. Then,

ProjR ∼= ProjR[d] .

Using the above Lem. 28 we can find a closed embedding of a weighted projective space
Ww into an ordinary projective space PN with big enough N . There is a very ampleness
condition that was described by Delorme in [26, 27].

Proposition 10. Consider the weighted polynomial ring R = k[x0, . . . , xn] , where the
positive integers q0, . . . , qn are the weights of x0, . . . , xn and d = gcd(q0, . . . , qn). The
following are true:

i) R[d] = R. Thus,
Wn

(q0,...,qn)(R) =Wn

( q0d ,...,
qn
d )(R).
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ii) Suppose that q0, . . . , qn have no common factor, and that d is a common factor of all
ai for i 6= j (and therefore coprime to aj). Then the d’th truncation of R is the polynomial
ring

R[d] = k[x0, . . . , xj−1, x
d
j , xj+1, . . . , xn].

Thus, in this case

Wn
(q0,...,qn)(R) =Wn

( q0d ,...,
qj−1
d ,qj ,

qj+1
d ,..., qnd )

(R[d]).

In particular by passing to a truncation R[d] of R which is a polynomial ring generated
by pure powers of xi, we can always write any weighted projective space as a well formed
weighted projective space.

Proof. i) If d|qi for all i = 0, . . . , n then the degree of every monomial is divisible by d
and so part i) is obvious. Hence, the truncation does not change anything.

ii) Since d|qi for every i 6= j then xi ∈ R[d] for every i 6= j. But the only way that xj
can occur in a monomial with degree divisible by d is as a d’th power. Given

R = k[x0, . . . , xj , . . . , xn]

then
R[d] = k[x0, . . . , x

d
j , . . . , xn]

and
Wn

(q0,...,qn)(R) = Proj kw[x0, . . . , xj , . . . , xn] ∼= Proj kw/d[x0, . . . , x
d
j , . . . , xn]

=Wn

( q0d ,...,
qj−1
d ,qj ,

qj+1
d ,..., qnd )

(R[d]).

This completes the proof. �

Hence, the above result shows that any weighted projective space is isomorphic to a
well formed weighted projective space.

9.5. Heights on the weighted projective space. Let K be an algebraic number field and
[K : Q] = n. With MK we will denote the set of all absolute values in K. For v ∈ MK ,
the local degree at v, denoted nv is

nv = [Kv : Qv]

where Kv,Qv are the completions with respect to v.
The following are true for any number field K; see [56, pg. 171-172] for proofs. Let

L/K be an extension of number fields, and let v ∈MK be an absolute value on K. Then∑
w∈ML

w|v

[Lw : Kv] = [L : K]

is known as the degree formula. For x ∈ K? we have the product formula

(32)
∏

v∈MK

|x|nvv = 1.

Given a point p ∈ Pn(Q) with p = [x0, . . . , xn], the field of definition of p is

Q(p) = Q
(
x0

xj
, . . . ,

xn
xj

)
for any j such that xj 6= 0. Next we try to generalize some of these concepts for the space
Wω(K), where K is a number field.
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In [76] and [12] was introduced the concept of weighted height, which we will briefly
describe below.

Let ω = (q0, . . . , qn) be a set of heights and Wn(K) the weighted projective space
over a number field K. Let p ∈ Wn(K) a point such that p = [x0, . . . , xn]. We define the
multiplicative height of P as

(33) hK(p) :=
∏

v∈MK

max

{
|x0|

nv
q0
v , . . . , |xn|

nv
qn
v

}
The logarithmic height of the point p is defined as follows

h′K(p) := log hK(p) =
∑
v∈MK

max
0≤j≤n

{
nv
qj
· log |xj |v

}
.

Next we will give some basic properties of heights functions.

Proposition 11. LetK be a number field and p ∈ Wn(K) with weights w = (q0, . . . , qn).
Then the following are true:

i) The height hK(p) is well defined, in other words it does not depend on the choice of
coordinates of p

ii) hK(p) ≥ 1.

Moreover, we have the following (see [12] for details.

Proposition 12. Let p ∈ Wn(K). Then the following are true:
i) If K = Q,

(34) hQ(p) = max
0≤j≤n

{
|xj |1/qj∞

}
.

ii) Let L/K be a finite extension. Then,

(35) hL(p) = hK(p)[L:K].

9.5.1. Absolute heights. Using Prop. 12, part ii), we can define the height onWn(Q). The
height of a point onWn(Q) is called the absolute (multiplicative) weighted height and
is the function

h̃ :Wn(Q̄)→ [1,∞)

h̃(p) = hK(p)1/[K:Q],

where p ∈ Wn(K), for any K. The absolute (logarithmic) weighted height onWn(Q)
is the function

h̃
′

:Wn(Q̄)→ [0,∞)

h̃
′
(p) = log h(p) =

1

[K : Q]
h̃K(p).

Lemma 29. The height is invariant under Galois conjugation. In other words, for p ∈
Wn(Q) and σ ∈ GQ we have h(pσ) = h(p).

Proof. Let p = [x0, . . . , xn] ∈ Wn(Q). Let K be a finite Galois extension of Q such that
p ∈ Wn(K). Let σ ∈ GQ. Then σ gives an isomorphism

σ : K → Kσ
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and also identifies the sets MK , and MKσ as follows
σ : MK →MKσ

v → vσ

Hence, for every x ∈ K and v ∈ MK , we have |xσ|vσ = |x|v . Obviously σ gives as well
an isomorphism

σ : Kv → Kσ
vσ

Therefore nv = nvσ , where nvσ = [Kσ
vσ : Qv]. Then

hKσ (Pσ) =
∏

w∈MKσ

max
0≤i≤n

{
|xσi |nw/qiw

}
=

∏
v∈MK

max
0≤i≤n

{
|xσi |

nvσ/qi
vσ

}
=

∏
v∈MK

max
0≤i≤n

{
|xi|nv/qiv

}
= hK(p)

This completes the proof. �
The following is the equivalent of Northcott’s theorem for weighted projective spaces.

Theorem 30. [12] Let c0 and d0 be constants andWn
w(Q) the weighted projective space

with weights w = (q0, . . . , qn). Then the set

{p ∈ Wn
w(Q) : H(p) ≤ c0 and [Q(p) : Q] ≤ d0}

contains only finitely many points. In particular for any number field K

{p ∈ Wn
w(K) : hK(p) ≤ c0}

is a finite set.

The next result is the analogue of Kronecker’s theorem for heights on projective spaces.

Lemma 30. Let K be a number field, and let p = [x0 : · · · : xn] ∈ Wn
w(K), where

ω = (q0, . . . , qn). Fix any i with xi 6= 0. Then h(p) = 1 if the ratio xj/ξ
qj
i , where ξi is the

qi-th root of unity of xi, is a root of unity or zero for every 0 ≤ j ≤ n and j 6= i.

Proof. Let p = [x0 : · · · : xi : · · · : xn] ∈ Wn(K). Assume xi 6= 0. Adjoin the qi-th root
of unity to xi. Hence, let xi = ξqii so that wt(ξi) = 1. Without loss of generality we can
divide the coordinates of p by ξqji , for j 6= i, and then we have

p =

[
x0

ξq0i
, . . . , 1, . . . ,

xn
ξqni

]
.

For simplicity let p = [y0 : · · · : 1 : · · · : yn]. If yl is a root of unity for every 0 ≤ l ≤ n
and l 6= i then |yl|v = 1 for every v ∈MK . Hence, h(p) = 1. �

9.6. Polynomials in weighted projective spaces. Next we give a brief description of a
weighted variety and then define the height on a weighted variety. For more details on
weighted projective varieties see [10, 28] among others.

As it turns out, in the same way as in ordinary projective spaces, evaluating a polynomial
at a point it’s not well defined, but checking if a point is a zero of a polynomial is. We will
make this precise below. As above we let k be a field. We define the polynomial ring in
n+ 1 variables with weights w = (q0, . . . , qn) as kw[x0, . . . , xn] such that wt(xi) = qi.

This changes the grading of the ring but does not change the underlying k-algebra
structure. So, kw[x0, . . . , xn] is a Noetherian ring. We will write kw[x0, . . . , xn]d ⊂
kw[x0, . . . , xn], where w = (q0, . . . , qn), to mean the additive group of all weighted ho-
mogenous polynomials of degree d.

albanian-j-math.com/archives/2019-03.pdf

http://albanian-j-math.com/archives/2019-03.pdf


FROM HYPERELLIPTIC TO SUPERELLIPTIC CURVES 160

Definition 6. Let f(x0, . . . , xn) ∈ k[x0, . . . , xn] where wt(xi) = qi, for i = 0, . . . , n. A
polynomial f(x0, . . . , xn) is called a weighted homogenous polynomial of degree d if
each monomial in f is weighted of degree d, i.e.

f(x0, . . . , xn) =

m∑
i=1

ai

n∏
j=0

x
dj
j , ai ∈ k and m ∈ N

and for all 0 ≤ i ≤ n, we have that
n∑
i=1

qidj = d .

Consider the point P = (a0, . . . , an) ∈ Wn
w and f(x0, . . . , xn) ∈ kw[x0, . . . , xn]d. By

definition P = (λq0a0, . . . , λ
qnan) for any λ ∈ Gm, and particularly we can assume that

λ 6= 1, then we have that

f(λq0a0, . . . , λ
qnan) = f(a0, . . . , an) if and only if f(a0, . . . , an) = 0 .

Thus, it is well defined to write f(P ) = 0 for some f(x0, . . . , xn) ∈ kw[x0, . . . , xn]d
and P ∈ Wn

w. We say that an ideal is a weighted homogenous ideal if and only if every
element of f ∈ I can be written as

f =

deg f∑
i=0

fi

with fi ∈ kw[x0, . . . , xn]i ∩ I . Given I / kw[xo, . . . , xn], a weighted homogenous ideal,
define the weighted projective variety by

V (I) =
{
P ∈ Wn

w

∣∣∣ f(P ) = 0 for all f ∈ I
}
.

Conversely, given V ⊂ Wn
w define the ideal associated to V by

I(V ) =
{
f ∈ kw[x0, . . . , xn]

∣∣∣ f(P ) = 0 for all p ∈ V
}
.

In the next lemma we prove that I(V ) it is actually an ideal.

Lemma 31. Let V ⊂ Wn
w and define I(V ) as above

I(V ) =
{
f ∈ kw[x0, . . . , xn]

∣∣∣ f(P ) = 0 for all p ∈ V
}

then I(V ) is a radical weighted homogenous ideal.

Proof. Let f and g be two polynomials in I(V ). Then, f(P ) = g(P ) = 0 for all points
P ∈ V , i.e. they both vanish at all points P in the variety V then, so does f + g and fh
where h is any polynomial in I(V ). Therefore, I(V ) is an ideal.

Since, kw[x0, . . . , xn] is Noetherian then I(V ) is finitely generated, say

I(V ) = 〈f1, . . . , fn〉.
But, fi ∈ kw[x0, . . . , xn] for all i and therefore every fi is weighted homogenous. Hence
I(V ) is weighted homogenous since it is generated by finitely many weighted homogenous
polynomials.

Lastly let us prove that I(V ) is radical. Let fr ∈ I(V ). Then, for all points P ∈ V
we have that fr(P ) = 0. But since f ∈ kw[x0, . . . , xn], which is an integral domain, then
fr(P ) = (f(P )r = 0 implies that f(P ) = 0 for all P ∈ V . Therefore, I(V ) is radical.

�
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A weighted projective variety is said to be irreducible if it has no non-trivial decom-
position into subvarieties. Weighted projective varieties are projective varieties. Hence,
we can define a Zariski topology for weighted projective varietiesWn

w which is given by
defining the closed sets of Wn

w to be those of the form V (I) for weighted homogenous
ideal I ⊂ kw[x0, . . . , xn].

Let f(x0, . . . , xn) be a weighted homogenous polynomial of degree d, then each mono-
mial in f is weighted of degree d, i.e.

f(x0, . . . , xn) =

m∑
i=1

ai

n∏
j=0

x
dj
j , ai ∈ k and m ∈ N

and for all 0 ≤ i ≤ n, we have that
n∑
i=1

qidj = d.

We use lexicographic ordering to order the terms in a given polynomial, and

x1 > x2 > · · · > xn.

The multiplicative height of f is defined as follows

hK(f) =
∏

v∈MK

|f |nvv

where
|f |v := max

j

{
|aj |1/qjv

}
for any absolute value v. Hence, the multiplicative height of a polynomial is the height
of its coefficients taken as coordinates in the weighted projective space. The absolute
multiplicative height is defined as follows

H : Pn(Q)→ [1,∞)

H(f) = hK(f)1/[K:Q].

Theorem 31. Let F (x, y) ∈ Kw[x, y], where w = (q0, q1), be a given weighted homoge-
nous polynomial. Then, there are only finitely many polynomials G(x, y) ∈ Kw[x, y] such
that hK(G) ≤ hK(F ).

Proof. Let
F (x, y) =

∑
i=(i0,i1)∈I
d=i0·q0+i1·q1

aix
i0yi1

be a polynomial with coefficients in K and fix an ordering x > y. Let hK(F ) = c. By
definition

hK(F ) =
∏

v∈MK

|f |nvv =
∏

v∈MK

max
i

{
|ai|nvv

}
= hK [a0 . . . , ai, . . . ]i∈I .

But, P = [a0 . . . , ai, . . . ]i∈I is a point in Ps where s is the number of monomials of degree

d in 2 variables. Hence, s =

(
d+ 1
d

)
. From Thm. 30 we have that for any constant c

the set
{P ∈ Ps(K) : hK(p) ≤ c}

is finite. Hence there are finitely many polynomials G(x, y) with content 1 corresponding
to points P with height hK(G) ≤ c = hK(F ).
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�
Next we see an application of the weighted projective spaces which was the main moti-

vation for the definition of the weighted gcd’s and the height in such spaces.

9.7. Space of binary forms as weighted projective spaces. It turns out that the space of
degree-d binary forms is a weighted projective space.

To start, let us determine what happens to the invariants when we change the coordi-
nates, in other words when we act on the binary form g(x, y) via M ∈ GL2(k). Let
I0, . . . , In be the generators of Rd with degrees q0, . . . , qn respectively. We denote the
tuple of invariants by I := (I0, . . . , In). The following result is fundamental to our ap-
proach.

Proposition 13. For any two binary formal f and g, and M ∈ GL2(k), g = fM if and
only if

(I0(g), . . . Ii(f), . . . , In(g)) = (λq0 I0(f), . . . , λqi Ii(f), . . . , λqn In(f), ) ,

where λ = (det M)
d
2 .

Proof. Let f(x, y) =
∑d
i=0 aix

iyd−i be a degree d ≥ 2 binary form and Is be an invariant
of degree s inRd, say

Is =
∑

aα0
0 . . . aαdd

where αi = 0, . . . , s. When we evaluate I(fM ) = I(f(ax+ by, cx+ dy) we have
�

Corollary 13. Let I0, I1, . . . , In be the generators of the ring of invariants Rd of degree
d binary forms. A k-isomorphism class of a binary form f is determined by the point

I(f) := [I0(f), I1(f), . . . , In(f)] ∈ Wn
ω (k).

Moreover f = gM for some M ∈ GL2(K) if and only if I(f) = λ ? I(g), for λ =

(det A)
d
2 .

Since the isomorphism class of any superelliptic curve, given by

(36) C : zmyd−m = f(x, y) ,

is determined by the equivalence class of binary form f(x, y) we denote the set of invari-
ants of C by I(C) := I(f). Therefore, we have:

Corollary 14. Let C be a superelliptic curve given by Eq. (36). The k̄-isomorphism class
of C is determined by the weighted moduli point p := [I(f)] ∈ Wn

ω (k).

10. MINIMAL MODELS

Let k be an algebraic number field and Ok its ring of integers. The isomorphism class
of a smooth, irreducible algebraic curve C defined over Ok its determined by its set in-
variants which are homogenous polynomials in terms of the coefficients of C. When C is a
superelliptic curve then these invariants are generators of the invariant ring of binary forms
of fixed degree.

If C is a hyperelliptic curve over k, then the discriminant of C is a polynomial given in
terms of the coefficients of the curve. Hence, it is an ideal in the ring of integers Ok. The
valuation of this ideal is a positive integer. A classical question is to find an equation of the
curve such that this valuation is minimal, in other words the discriminant is minimal.
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The simplest example is for C being an elliptic curve. There is an extensive theory
of the minimal discriminant ideal DC/K . Tate [107] devised an algorithm how to deter-
mine the Weierstrass equation of an elliptic curve with minimal discriminant as part of his
larger project of determining Neron models for elliptic curves. An implementation of this
approach for elliptic curves was done by Laska in [68]. Tate’s approach was extended to
genus 2 curves by Liu [70] for genus 2, and to all hyperelliptic curves by Lockhart [71].

10.1. Minimal discriminants over local fields. Let K be a local field, complete with
respect to a valuation v. Let OK be the ring of integers of K, in other words OK = {x ∈
K | v(x) ≥ 0}. We denote by O∗K the group of units of OK and by m the maximal ideal
of OK . Let π be a generator for m and k = OK/m the residue field. We assume that k is
perfect and denote its algebraic closure by k̄.

Let Cg be a superelliptic curve of genus g ≥ 2 defined over K and P a K-rational point
on Cg . By a suitable change of coordinates we can assume that all coefficients of Cg are
in OK . Then, the discriminant ∆ ∈ OK . In this case we say that the equation of Cg is
integral.

An equation for Cg is said to be a minimal equation if it is integral and v(∆) is minimal
among all integral equations of Cg . The ideal I = mv(∆) is called the minimal discrimi-
nant of Cg .

10.2. Minimal discriminants over global fields. Let us assume now that K is an alge-
braic number field with field of integersOK . LetMK be the set of all inequivalent absolute
values on K and M0

K the set of all non-archimedean absolute values in MK . We denote
by Kv the completion of K for each v ∈ M0

K and by Ov the valuation ring in Kv. Let pv
be the prime ideal in OK and mv the corresponding maximal ideal in Kv. Let (C, P ) be a
superelliptic curve of genus g ≥ 2 over K.

If v ∈ M0
K we say that C is integral at v if C is integral when viewed as a curve over

Kv. We say that C is minimal at v when it is minimal over Kv.
An equation of C overK is called integral (resp. minimal) overK if it is integral (resp.

minimal) over Kv, for each v ∈M0
K .

Next we will define the minimal discriminant over K to be the product of all the local
minimal discriminants. For each v ∈ M0

K we denote by ∆v the minimal discriminant for
(C, P ) over Kv. The minimal discriminant of (C, P ) over K is the ideal

∆C/K =
∏

v∈M0
K

m
v(∆v)
v .

We denote by aC the ideal aC =
∏

v∈M0
K
p
v(∆v)
v .

Theorem 32. Let (Cg, P ) be a superelliptic curve over Q. Then its global minimal discrim-
inant ∆ ∈ Z is unique (up to multiplication by a unit). There exists a minimal Weierstrass
equation corresponding to this ∆.

Remark 6. In general (K an algebraic number field) with class number > 1, then the
curve may not have a minimal Weierstrass equation.

10.2.1. Elliptic curves and Tate’s algorithm. Let E be an elliptic curve defined over a
number field K with equation

(37) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

For simplicity we assume that E is defined over Q; the algorithm works exactly the same
for any algebraic number field K.
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We would like to find an equation

(38) y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6.

such that the discriminant ∆′ of the curve in Eq. (38) is minimal. Since we want the new
equation to have integer coefficients, the only transformations we can carry out are

x = u2x′ + r, y = u3y′ + u2sx′ + t

for u, r, s, t ∈ Z and u 6= 0. The coefficients of the two equations are related as follows:

ua′1 = a1 + 2s,

u3a′3 = a3 + ra1 + 2t,

u2a′2 = a2 − sa1 + 3r − s2,

u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − rta1 − t2

u12∆′ = ∆

The version of the algorithm below is due to M. Laska; see [68].

STEP 1: Compute the following

c4 = (a2
1 + 4a2)2 − 24(a1a3 + 2a4),

c6 = −(a2
1 + 4a2)3 + 36(a2

1 + 4a2)(a1a3 + 2a4)− 216(a2
3 + 4a6)

STEP 2: Determine the set S of integers u ∈ Z such that there exist xu, yu ∈ Z such that
u4 = xuc4 and u6yu = c6. Notice that S is a finite set.

STEP 3: Choose the largest u ∈ S, say u0 and factor it as u0 = 2e2 3e3 v, where v is
relatively prime to 6.

STEP 4: Choose

a′1, a
′
3 ∈

{
n∑
i=1

αiwi |αi = 0 or 1

}
and a′2 ∈

{
n∑
i=1

αiwi |αi = −1, 0 or 1

}
subject to the following conditions:

(a′1)4 ≡ xu mod 8, (a′2)3 ≡ −(a′1)6 − yu mod 3.

STEP 5: Solve the following equations for a′4 and a′6

xu = (a′1
2

+ 4a′2)2 − 24(a′1a
′
3 + 2a′4),

yu = −(a′1
2

+ 4a′2)3 + 36(a′1
2

+ 4a′2)(a′1a
′
3 + 2a′4)− 216(a′3

2
+ 4a′6)

STEP 6: Solve the equations for s, r, t successively

ua′1 = a1 + 2s, u2a′2 = a2 − sa1 + 3r − s2, u3a′3 = a3 + ra1 + 2t

For these values of a′1, . . . , a
′
6 the Eq. (38) is the desired result.

For a complete version of the algorithm see [68].

10.3. Superelliptic curves with minimal weighted moduli point. Now we will consider
the minimal models of curves over Ok. Let C be as in Eq. (36) and p = [I(f)] ∈ Wn

ω (k).
Let us assume that for a prime p ∈ Ok, we have νp (wgcd (p)) = α. If we use the
transformation x→ x

pβ
x, for β ≤ α, then from Prop. 13 the invariants will be transformed

according to
1

p
d
2β

? I(f) .
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To ensure that the moduli point p still has integer coefficients we must pick β such that
p
βd
2 divides pνp(xi) for i = 0, . . . , n. Hence, we must pick β as the maximum integer such

that β ≤ 2
dνp(xi), for all i = 0, . . . , n. The transformation

(x, y)→
(
x

pβ
, y

)
,

has a corresponding Jacobian matrix M =

[ 1
pβ

0

0 1

]
with det M = 1

pβ
. Hence, Prop. 13

implies that the moduli point p changes according to p →
(

1
pβ

)d/2
? p, which is still an

integer tuple. We can repeat this this for all primes p dividing wgcd (p). Notice that the
new point is not necessarily normalized in Wn

ω (k) since β is not necessarily equal to α.
This motivates the following definition.

Definition 7. Let C be a superelliptic curve defined over an integer ring Ok and p ∈
Wn
ω (Ok) its corresponding weighted moduli point. We say that C has a minimal model

over Ok if for every prime p ∈ Ok the valuation of the tuple at p

valp(p) := max {νp(xi) for all i = 0, . . . n} ,

is minimal, where νp(xi) is the valuation of xi at the prime p.

The following is proved in [47].

Theorem 33. Minimal models of superelliptic curves exist. In particular, the equation
given by C : zmyd−m = f(x, y) is a minimal model over Ok, if for every prime p ∈ Ok
which divides p | wgcd (I(f)), the valuation valp of I(f) at p satisfies

(39) valp(I(f)) <
d

2
qi,

for all i = 0, . . . , n. Moreover, then for λ = wgcd (I(f)) with respect the weights(⌊
dq0
2

⌋
, . . . ,

⌊
dqn
2

⌋)
, the transformation

(x, y, z)→
(x
λ
, y, λ

d
m z
)

gives the minimal model of C over Ok. If m|d then this isomorphism is defined over k.

Let C be a superelliptic curve given by Eq. (36) over Ok and p = I(f) ∈ Wn
ω (Ok)

with weights ω = (q0, . . . , qn). Then p ∈ Wn
ω (Ok) and exists M ∈ SL2(Ok) such that

M =

[
1
λ 0
0 1

]
and λ as in the theorem’s hypothesis, and Eq. (39) holds; see [47] for details.

Let us also determine how the equation of the curve C changes when we apply the
transformation by M . We have

zmyd−m = f
(x
λ
, y
)

= ad
xd

λd
+ ad−1

xd−1

λd−1
y + · · ·+ a1

x

λ
yd−1 + a0y

d ,

or, equivalently,

(40) C′ : λdzmyd−m = adx
d + λad−1x

d−1y + · · ·+ λd−1a1xy
d−1 + λda0y

d .

This equation has coefficients in Ok. Its weighted moduli point is

I(fM ) =
1

λ
d
2

? I(f),
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and satisfies Eq. (39). It is a twist of the curve C since λd is not necessary a m-th power in
Ok. The isomorphism of the curves over the field k

(
λ
d
m

)
is given by

(x, y, z)→
(x
λ
, y, λ

d
m z
)
.

If m|d then this isomorphism is defined over k and C′ has equation

C′ : zmyd−m = adx
d + λad−1x

d−1y + · · ·+ λd−1a1xy
d−1 + λda0y

d .

Thus, we have the following:

Corollary 15. There exists a curve C′ given in Eq. (40) isomorphic to C over the field
K := k

(
wgcd (p)

d
m

)
with minimal SL2(Ok)-invariants. Moreover, if m|d then C and C′

are k-isomorphic.

An immediate consequence of the above is that in the case of hyperelliptic curves we
have m = 2 and d = 2g + 2. Hence, the curves C and C′ are always isomorphic over k.
We have the following:

Corollary 16. Given a hyperelliptic curve defined over a ring of integers Ok. There exists
a curve C′ k-isomorphic to C with minimal SL2(Ok)-invariants.

We give a detailed account of superelliptic curves with minimal invariants in [47].

11. FIELD OF MODULI

Let C be a genus g projective, irreducible, algebraic curve defined over k, say given
as the common zeroes of the polynomials P1, . . . , Pr, and let us denote by G = Aut(C)
the full automorphism group of C. If σ ∈ Gal(k), then Xσ will denote the curve defined
as the common zeroes of the polynomials Pσ1 , . . . , P

σ
r , where Pσj is obtained from Pj by

applying σ to its coefficients. In particular, if τ is also a field automorphism of k, then
Xτσ = (Xσ)τ . For details we refer to [52].

A subfield k0 of k is called a field of definition of C if there is a curve Y , defined over
k0, which is isomorphic to C. It is clear that every subfield of k containing k0 is also a field
of definition of it. In the other direction, a subfield of k0 might not be a field of definition
of C. Weil’s descent theorem [109] provides sufficient conditions for a subfield k0 of k to
be a field of definition. Let us denote by Gal(k/k0) the group of field automorphisms of k
acting as the identity on k0.

Theorem 34 (Weil’s descent theorem [109]). Assume that for every σ ∈ Gal(k/k0) there
is an isomorphism fσ : C → Cσ so that

fτσ = fτσ ◦ fτ , ∀σ, τ ∈ Gal(k/k0).

Then there is a curve Y , defined over k0, and there is an isomorphism R : C → Y , defined
over a finite extension of k0, so that R = Rσ ◦ fσ , for every σ ∈ Gal(k/k0).

Clearly, the sufficient conditions in Weil’s descent theorem are trivially satisfied if C has
non-trivial automorphisms. This is the generic situation for C of genus at least three.

Corollary 17. If C has trivial group of automorphisms and for every σ ∈ Gal(k/k0) there
is an isomorphism fσ : C → Cσ , then C can be defined over k0.
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The notion of field of moduli was originally introduced by Shimura for the case of
abelian varieties and later extended to more general algebraic varieties by Koizumi. If GC
is the subgroup of Gal(k) consisting of those σ so that Cσ is isomorphic to C, then the fixed
fieldMC ofGC is called the field of moduli of C. As we are assuming that k is algebraically
closed and of characteristic zero, we have thatGC consists of all automorphisms of Gal(k)
acting as the identity on MC .

Every curve of genus g ≤ 1 can be defined over its field of moduli. If g ≥ 2, then there
are known examples of curves which cannot be defined over their field of moduli. A direct
consequence of Cor. 17 is the following.

Corollary 18. Every curve with trivial group of automorphisms can be defined over its
field of moduli.

As a consequence of Belyi’s theorem [11], every quasiplatonic curve C can be defined
over Q (so over a finite extension of Q).

Theorem 35 (Wolfart [110]). Every quasiplatonic curve can be defined over its field of
moduli (which is a number field).

11.1. Two practical sufficient conditions. When the curve C has a non-trivial group of
automorphisms, then Weil’s conditions (in Weil’s descent theorem) are in general not easy
to check. Next we consider certain cases for which it is possible to check for C to be
definable over its field of moduli.

Sufficient condition 1: unique subgroups Let H be a subgroup of Aut(C). In general
there might other different subgroups K which are isomorphic to H and with C/K and
C/H having the same signature. For instance, the genus-two curve C defined by y2 =
x(x − 1/2)(x − 2)(x − 1/3)(x − 3) has two conformal involutions, τ1 and τ2, whose
product is the hyperelliptic involution. The quotient C/〈τj〉 has genus one and exactly
two cone points (of order two). We say that H is is unique in Aut(C) if it is the unique
subgroup of Aut(C) isomorphic toH and with quotient orbifold of same signature as C/H .
Typical examples are (i) H = Aut(C) and (ii) H being the cyclic group generated by the
hyperelliptic involution for the case of hyperelliptic curves. If H is unique in Aut(C), then
it is a normal subgroup; so we may consider the reduced group Aut(C) = Aut(C)/H ,
which is a group of automorphisms of the quotient orbifold C/H . In [53] the following
sufficient condition for a curve to definable over its field of moduli was obtained;

Theorem 36. Let C be a curve of genus g ≥ 2 admitting a subgroup H which is unique in
Aut(C) and so that C/H has genus zero. If the reduced group of automorphisms Aut(C) =
Aut(C)/H is different from trivial or cyclic, then C is definable over its field of moduli.

If C is a hyperelliptic curve, then a consequence of the above is the following result.

Corollary 19. Let C be a hyperelliptic curve with extra automorphisms and reduced auto-
morphism group Aut(C) not isomorphic to a cyclic group. Then, the field of moduli of C is
a field of definition.

Sufficient condition 2: Odd signature Another sufficient condition of a curve C to be
definable over its field of moduli, which in particular contains the case of quasiplatonic
curves, was provided in [8]. We say that C has odd signature if C/Aut(C) has genus zero
and in its signature one of the cone orders appears an odd number of times.

Theorem 37. Let C be a curve of genus g ≥ 2. If C has odd signature, then it can be
defined over its field of moduli.
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11.2. The locus of curves with prescribed group action, moduli dimension of families.
Fix an integer g ≥ 2 and a finite group G. Let C1, . . . , Cr be nontrivial conjugacy classes
of G. Let C = (C1, . . . , Cr), viewed as an unordered tuple, where repetitions are allowed.
We allow r to be zero, in which case C is empty. Consider pairs (C, µ), where C is a curve
and µ : G→ Aut(C) is an injective homomorphism. We will suppress µ and just say C is
a curve with G-action, or a G-curve. Two G-curves C and C′ are called equivalent if there
is a G-equivariant conformal isomorphism C → C′. We say a G-curve C is of ramification
type (g,G,C) (for short, of type (g,G,C)) if

i) g is the genus of C,
ii) G < Aut(C),

iii) the points of the quotient C/G that are ramified in the cover C → C/G can be
labeled as p1, . . . , pr such that Ci is the conjugacy class in G of distinguished
inertia group generators over pi (for i = 1, . . . , r).

If C is a G-curve of type (g,G,C), then the genus g0 of C/G is given by the Riemann-
Hurwitz formula

2(g − 1) = 2|G|(g0 − 1) + |G|
r∑
j=1

(1− |Cj |−1).

Define H = H(g,G,C) to be the set of equivalence classes of G-curves of type
(g,G,C). By covering space theory,H is non-empty if and only if G can be generated by
elements α1, β1, . . . , αg0 , βg0 , γ1, . . . , γr with γi ∈ Ci and

∏
j [αj , βj ]

∏
i γi = 1, where

[α, β] = α−1β−1αβ.
LetMg be the moduli space of genus g curves, andMg0,r the moduli space of genus

g0 curves with r distinct marked points, where we view the marked points as unordered.
Consider the map

Φ : H → Mg,

forgetting the G-action, and the map Ψ : H → Mg0,r mapping (the class of) a G-curve
C to the class of the quotient curve C/G together with the (unordered) set of branch points
p1, . . . , pr. If H 6= ∅, then Ψ is surjective and has finite fibers, by covering space theory.
Also Φ has finite fibers, since the automorphism group of a curve of genus ≥ 2 is finite.
The setH carries a structure of quasi-projective variety (over C) such that the maps Φ and
Ψ are finite morphisms. IfH 6= ∅, then all (irreducible) components ofH map surjectively
toMg0,r (through a finite map), hence they all have the same dimension

δ(g,G,C) := dim Mg0,r = 3g0 − 3 + r

Let M(g,G,C) denote the image of Φ, i.e., the locus of genus g curves admitting a G-
action of type (g,G,C). Since Φ is a finite map, if this locus is non-empty, each of its
(irreducible) components has dimension δ(g,G,C). Thm. 35 can be stated as follows:

Theorem 38. If δ(g,G,C) = 0, then every curve inM(g,G,C) is defined over its field
of moduli.

The last part of the above is due to the fact that δ = 0 ensures that the quotient orbifold
C/G must be of genus zero and with exactly three conical points, that is, C is a quasipla-
tonic curve.

11.3. Field of moduli of superelliptic curves. Let C be a superelliptic curve of level n
with G = Aut(C). By the definition, there is some τ ∈ G, of order n and central, so
that the quotient C/〈τ〉 has genus zero, that is, it can be identified with the projective line,
and all its cone points have order n. As, in this case, the cyclic group H = 〈τ〉 ∼= Cn
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is normal subgroup of G, we may consider the quotient group G := G/H , called the
reduced automorphism group of C with respect to H; so G is a degree n central extension
of G.

In the particular case that n = p is a prime integer, Castelnuovo-Severi’s inequality [23]
asserts that for g > (p− 1)2 the cyclic group H is unique in Aut(C). The following result
shows that the superelliptic group of level n is unique:

Theorem 39. A superelliptic curve of level n and genus g ≥ 2 has a unique superelliptic
group of level n.

Proof. Let C be a superelliptic curve of level n and assume that 〈τ〉 and 〈η〉 are two dif-
ferent superelliptic groups of level n. The condition that the cone points of both quotient
orbifolds C/〈τ〉 and C/〈η〉 are of order n asserts that a fixed point of a non-trivial power
of τ (respectively, of η) must also be a fixed point of τ (respectively, η). In this way, our
previous assumption asserts that no non-trivial power of η has a common fixed point with
a non-trivial power of τ . In this case, the fact that τ and η are central asserts that ητ = τη
and that 〈τ, η〉 ∼= C2

n (see also [92]).
Let π : C → P1

k be a regular branched cover with 〈τ〉 as deck group. Then the auto-
morphism η induces a automorphism ρ ∈ PGL2(k) (also of order n) so that πη = ρπ. As
ρ is conjugated to a rotation x 7→ ωnx, where ωnn = 1, we observe that it has exactly two
fixed points. This asserts that η must have either n or 2n fixed points (forming two orbits
under the action of 〈τ〉). As this is also true by interchanging the roles of τ and η, the same
holds for the fixed points of τ . It follows that the cone points of π consists of (i) exactly
two sets of cardinality n each one or (ii) exactly one set of cardinality n, and each one
being invariant under the rotation ρ. Up to post-composition by a suitable transformation
in PGL2(k), we may assume these in case (i) the 2n cone points are given by the n roots
of unity and the n roots of unity of a point different from 1 and 0 and in case (ii) that the n
cone points are the n roots of unity. In other words, C can be given either as

C1 : yn = (xn − 1)(xn − an), a ∈ k − {0, 1}
or as the classical Fermat curve

C2 : yn = xn − 1

and, in these models,

τ(x, y) = (x, ωny), η(x, y) = (ωnx, y).

As the genus of C1 is at least two, we must have that n ≥ 3. But such a curve also admits
the order two automorphism

γ(x, y) =
(a
x
,
ay

x2

)
which does not commute with η, a contradiction to the fact that η was assumed to be
central. In the Fermat case, the full group of automorphisms is C2

n o S3 and it may be
checked that it is not superelliptic.

�
The group G is a subgroup of the group of automorphisms of a genus zero field, so

G < PGL2(k) andG is finite. It is a classical result that every finite subgroup of PGL2(k)
(since we are assuming k of characteristic zero) is either the trivial group or isomorphic
to one of the following: Cm, Dm, A4, S4, A5. All automorphisms groups of superelliptic
curves and their equations were determined in [92] and [93]. Determining the automor-
phism groups G, the signature C of the covering C → C/G, and the dimension of the
locusM(g,G,C) for superelliptic curves is known; see [92]. We have seen in Thm. 39
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that its superelliptic group of level n is unique. As a consequence of Thm. 36, we obtain
the following fact concerning the field of moduli of superelliptic curves:

Theorem 40. Let C be a superelliptic curve of genus g ≥ 2 with superelliptic group
H ∼= Cn. If the reduced group of automorphisms Aut(C) = Aut(C)/H is different from
trivial or cyclic, then C is definable over its field of moduli.

As a consequence of the above, we only need to consider the case when the reduced
group G = G/H is either trivial or cyclic. As a consequence of Thm. 37 we have:

Theorem 41. Let C be a superelliptic curve of genus g ≥ 2 with superelliptic group
H ∼= Cn so that G = G/H is either trivial or cyclic. If C has odd signature, then it can be
defined over its field of moduli.

As a consequence, the only cases we need to take care are those superelliptic curves
with reduced group G = G/H being either trivial or cyclic and with C/G having not an
odd signature.

11.4. Superelliptic curves of genus at most 10. We proceed, in each genus 2 ≤ g ≤
10, to describe those superelliptic curves which are definable over their field of moduli.
Observe that in the cases left (which might or might not be definable over their field of
moduli) the last column in Table 4 provides an algebraic model yn = f(x), where f(x)
is defined over the algebraic closure and not necessarily over a minimal field of definition.
The branched regular covering π : C → P1

k defined by π(x, y) = x as deck group H =
〈τ(x, y) = (x, ζny)〉 ∼= Cn.

Genus 2: This case is well known since in this case for every curve C with |Aut(C)| > 2
the field of moduli is a field of definition.

Genus 3: There are 21 signatures from which 12 of them are hyperelliptic and 3 are
trigonal.

Lemma 32. Every superelliptic curve of genus 3, other than Nr. 1 and 2 in Table 5, is
definable over its field of moduli.

Proof. If Aut(C) is isomorphic to A4 or S4 then the corresponding locus consists of the
curves y4 = x4 + 2x2 + 1

3 and y2 = x8 + 14x4 + 1 which are both defined over their
field of moduli. If Aut(C) is isomorphic to a dihedral group and C is not hyperelliptic,
then Aut(C) is isomorphic to V4 × C4, G5, D6 × C3, and G8. These cases G5, D6 × C3,
and G8 correspond to y4 = x4 − 1, y3 = x(x3 − 1), and y4 = x(x2 − 1), which are
all defined over the field of moduli. If Aut(C) is isomorphic to a cyclic group, then in the

TABLE 5. Genus 3 curves No. 1 and 2 are the only one whose field of
moduli is not necessarily a field of definition

Nr. G G n m sig. δ Equation yn = f(x)

1 {I} C2 2 1 28 5 x
(
x6 +

∑5
i=1 aix

i + 1
)

2 C2 V4 2 2 26 3 x8 + a1x
2 + a2x

4 + a3x
6 + 1

3 C2 C4 2 2 23, 42 2 x
(
x6 + a1x

2 + a2x
4 + 1

)
4 C2 C6 3 2 2, 32, 6 1 x4 + a1x

2 + 1
5 V4 V4 × C4 4 2 23, 4 1 x4 + a1x

2 + 1

cases when it is isomorphic to C14, C12 there are two cases which correspond to the curves
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y2 = x7 + 1 and y3 = x4 + 1. The left cases are given in Table 5. The curve No. 5 is
definable over its field of moduli by Thm. 40. All the other cases, with the exception of Nr.
1 and 2, the curves are of odd signature, so they are definable over their field of moduli by
Thm. 41. �

Genus 4: We have the following:

Lemma 33. Every superelliptic curve of genus 4, other than Nr. 1, 3 and 5 in Table 6, is
definable over its field of moduli.

Proof. There is only one case when the reduced automorphism group Aut(C) is not iso-
morphic to a cyclic or a dihedral group, namely G ∼= S4. In this case, the curve is
y3 = x(x4 − 1) and is defined over the field of moduli. If G is isomorphic to a dihe-
dral group, then there are only 6 signatures which give the groups D6 × C3, D4 × C3,
D12×C3, D4×C3, D8×C3, andD4×C5. The groupsD12×C3, D8×C3, andD4×C5

correspond to curves y3 = x6 − 1, y3 = x(x4 − 1), and y5 = x(x2 − 1) respectively. The
remaining three cases are given by Nrs. 7, 8 and 9 in Table 6 which are definable over their
field of moduli by Thm. 40.

TABLE 6. Genus 4 curves No. 1, 3 and 5 are the only ones whose field
of moduli is not necessarily a field of definition

Nr. G G n m sig. δ Equation yn = f(x)

1 C2 2 1 210 7 x
(
x8 +

∑7
i=1 aix

i + 1
)

2 V4 2 2 27 4 x10 +
∑4
i=1 aix

2i + 1
3 Cm C4 2 2 24, 42 3 x(x8 + a3x

6 + a2x
4 + a1x

2 + 1)
4 C6 2 3 23, 3, 6 2 x9 + a1x

3 + a2x
6 + 1

5 C3 3 1 36 3 x(x4 + a1x+ a2x
2 + a3x

3 + 1)
6 C2 × C3 3 2 22, 33 2 x6 + a2x

4 + a1x
2 + 1

7 D6 × C3 3 3 22, 32 1 x6 + a1x
3 + 1

8 D2m V4 × C3 3 2 22, 3, 6 1 (x2 − 1)(x4 + a1x
2 + 1)

9 V4 × C3 3 2 22, 3, 6 1 x(x4 + a1x
2 + 1)

If Aut(C) is isomorphic to a cyclic group, then there are two signatures for each of the
groupsC18 andC15. In each case, both signatures give the same curve, namely y2 = x9+1
and y3 = x5 + 1 respectively. The left cases are given by cases 1 to 6 in Table 6. As all
cases, with the exception of cases 1, 3 and 5, the curves are of odd signature; so definable
over their field of moduli by Thm. 41. �

12. THETA FUNCTIONS

In this section we describe the theory of theta functions for hyperelliptic curves and
steer the reader toward the theta functions for superelliptic curves in the light of recent
developments in the area [65], [29], [31].

An algebraic function y(x) is a function which satisfies some equation

f(x, y(x)) = 0,

where f(x, y) ∈ C[x, y] is an irreducible polynomial. Recall from calculus that
∫
F (x) dx,

for F (x) ∈ C(x), can be integrated using partial fractions and expressing this as a sum of
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rational functions in x or logarithms of x. Also, the integral∫
F (x, y) dx,

where F ∈ C(x, y) and x, y ∈ C(t), can be easily solved by replacing for x = x(t) and
y = y(t) this reduces to the previous case. Similarly, we can deal with the case∫

F
(
x,
√
ax2 + bx+ c

)
dx.

Indeed, let y =
√
ax2 + bx+ c. Then, y2 = ax2 + bx + c is the equation of a conic. As

such it can be parametrized as x = x(t), y = y(t) and again reduces to the previous case.
However, the integral ∫

F
(
x,
√
ax3 + bx2 + cx+ d

)
dx

can not be solved this way because

y2 = ax3 + bx2 + cx+ d

is not a genus 0 curve, and therefore can not be parametrized. Such integrals are called
elliptic integrals. To solve them one needs to understand the concept of elliptic functions
which will be developed later. It can be easily shown that these integrals can be transformed
to the form ∫

p(x)√
q(x)

dx

where p(x), q(x) are polynomials such that deg q = 3, 4 and q(x) is separable. The term
elliptic comes from the fact that such integrals appear in the computation of the length of
an ellipse.

A natural generalization of the elliptic integrals are the hyperelliptic integrals which
are of the form

∫ p(x)√
q(x)

dx where p(x), q(x) are polynomials such that deg q ≥ 5 and q(x)

is separable. Naturally, the square root above can be assumed to be a n-th root. We will
call such integrals superelliptic integrals. Hence, a superelliptic integral is of the form∫

p(x)
n
√
q(x)

dx

where n ≥ 3, p(x), q(x) are polynomials such that deg q ≥ 5 and q(x) is separable.
What about the general case when

∫
R(x, y) dx, where R ∈ C(x, y) and y is an algebraic

function of x given by some equation F (x, y) = 0, for F (x, y) ∈ C[x, y]? An integral of
this type is called an Abelian integral.

There are several version of what is called the Abel’s theorem in the literature. For
original versions of what Abel actually stated and proved one can check the classic books
[9] and [25]. For modern interpretations of Abel’s theorem and its historical perspectives
there are the following wonderful references [44], [45] and [63]. In this short notes we
will try to stay as close as possible to the original version of Abel. Let y be an algebraic
function of x defined by an equation of the form

f(x, y) = yn +A1 y
n−1 + · · ·An = 0,

with A0, . . . , An ∈ C(x). Let R(x, y) ∈ C(x, y).
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Theorem 42 (Abel). The sum∫ (x1,y1)

(a1,b1)

R(x, y) + · · ·+
∫ (xm,ym)

(am,bm)

R(x, y)

for arbitrary ai, bi, is expressible as a sum of rational functions of the variables (x1, y1),
. . . , (xm, ym) and logarithms of such rational functions with the addition of

−
∫ (z1,s1)

R(x, y)− · · · −
∫ (zk,sk)

R(x, y) ,

where zi, si are determined by xi, yi as the roots of an algebraic equation whose coeffi-
cients are rational coefficients of x1, y1, . . . , xm, ym. Moreover, s1, . . . , sk are the cor-
responding values of y, for which any si is determined as a rational function of zi and
x1, y1, . . . , xm, ym. The number k does not depend on m, R(x, y), or the values (xi, yi),
but only on the equation

f(x, y) = 0.

For more details of this version of Abel’s theorem and its proof see [9, pg. 207-235]. A
modern version of the Abel’s theorem, which is found in most textbooks says that the Abel-
Jacobi’s map is injective; see Thm. 43 for details. A nice discussion from a modern view
point was provided in [63]. The new idea of Jacobi was to consider integrals

∫ w
c
R(x, y)

as variables and to try to determine w in terms of such variables. This idea led to the
fundamental concept of theta functions, which will be formally defined in the next section.

First, consider the Abelian integrals

zi :=

∫ wi

ci

R(x, y)

for i = 1, . . . g. Consider zi as variables and express wi as functions of zi,

wi = f(zi).

This is known as the Jacobi inversion problem.

Example 1 (Elliptic integrals). Let be given the integral (i.e. g = 1)∫ w1

0

dt√
(1− t2)(1− k2t2)

= z1

Then

w1 = sn (z1) = sn (u; k) =
θ3(0)θ1(v)

θ2(0)θ0(v)
,

where u = v π θ2
3(0) and θ0, θ1, θ2, θ3 are the Jacobi theta functions; see [9] for details.

It was exactly the above case that motivated Jacobi to introduce the theta functions. In
terms of these functions, he expressed his functions sn u, cn u, and dn u as fractions with
the same denominator whose zeroes form the common poles of sn u, cn u, and dn u. For
g = 2, Göpel found similar functions, building on work of Hermite. We will say more
about this case in the coming sections. Göpel and later Rosenhain notice that integrals of
the first kind, which exist for g = 2 become elliptic integrals of the first and third kind,
when two branch points of the curve of g = 2 coincide. This case corresponds to the
degenerate cases of the Ln spaces as described in [97] and later in [99]. Both Göpel and
Rosenhain, when developing theta functions for genus g = 2, were motivated by the Jacobi
inversion problem. Weierstrass considered functions which are quotients of theta functions
for the hyperelliptic curves, even though it appears that he never used the term "theta
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functions". In their generality, theta functions were developed by Riemann for g ≥ 2. It is
Riemann’s approach that is found in most modern books and that we will briefly describe in
the next section. Most known references for what comes next can be found in [61, 82–84].

12.1. Riemann’s theta functions.

12.1.1. Introduction to theta functions of curves. Let C be an irreducible, smooth, pro-
jective curve of genus g ≥ 2 defined over the complex field C. We denote the moduli
space of genus g byMg and the hyperelliptic locus inMg by Hg. It is well known that
dimMg = 3g − 3 and Hg is a (2g − 1) dimensional subvariety ofMg. Choose a sym-
plectic homology basis for C, say

{A1, . . . , Ag, B1, . . . , Bg}
such that the intersection products Ai ·Aj = Bi ·Bj = 0 and Ai ·Bj = δij . We choose a
basis {wi} for the space of holomorphic 1-forms such that

∫
Ai
wj = δij , where δij is the

Kronecker delta. The matrixO =
[∫
Bi
wj

]
is the period matrix of C. The columns of the

matrix [I |O] form a lattice L in Cg and the Jacobian of C is J (C) = Cg/L. Fix a point
p0 ∈ C. Then, the Abel-Jacobi map is defined as follows

µp : C → J (C)

p→
(∫ p

p0

w1, . . . ,

∫ p

p0

wg

)
mod L .

The Abel-Jacobi map can be extended to divisors of C the natural way. For example, for a
divisor D =

∑
i niPi we define

µ(D) =
∑
i

niµ(Pi).

The following two theorems are part of the folklore on the subject and their proofs can be
found in all classical textbooks.

Theorem 43 (Abel). The Abel-Jacobi map is injective.

Theorem 44 (Jacobi). The Abel-Jacobi map is surjective

We continue with our goal of defining theta functions and theta characteristics. Let

Hg = {t : t is symmetric g × gmatrix with positive definite imaginary part}
be the Siegel upper-half space. Then O ∈ Hg . The group of all 2g × 2g matrices M ∈
GL2g(Z) satisfying

M tJM = J with J =

(
0 Ig
−Ig 0

)
is called the symplectic group and denoted by Sp2g(Z). Let M =

(
R S
T U

)
∈ Sp2g(Z)

and t ∈ Hg where R, S, T and U are g × g matrices. Sp2g(Z) acts transitively on Hg as

M(t) = (Rt+ S)(Tt+ U)−1.

Here, the multiplication is matrix multiplication. There is an injection

Mg ↪→ Hg/Sp2g(Z) =: Ag,
where each curve C (up to isomorphism) is mapped to its Jacobian in Ag. If ` is a positive
integer, the principal congruence group of degree g and of level ` is defined as a subgroup
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of Sp2g(Z) by the condition M ≡ I2g mod `. We shall denote this group by Sp2g(Z)(`).
For any z ∈ Cg and t ∈ Hg the Riemann’s theta function is defined as

θ(z, t) =
∑
u∈Zg

eπi(u
ttu+2utz)

where u and z are g-dimensional column vectors and the products involved in the formula
are matrix products. The fact that the imaginary part of t is positive makes the series
absolutely convergent over every compact subset of Cg × Hg .

The theta function is holomorphic on Cg × Hg and has quasi periodic properties,

θ(z + u, τ) = θ(z, τ) and θ(z + uτ, τ) = e−πi(u
tτu+2ztu) · θ(z, τ),

where u ∈ Zg; see [82] for details. The locus

Θ := {z ∈ Cg/L : θ(z,O) = 0}

is called the theta divisor of C. Any point e ∈ J (C) can be uniquely written as e =

(b, a)

(
1g
O

)
where a, b ∈ Rg are the characteristics of e. We shall use the notation [e]

for the characteristic of e where [e] =

[
a
b

]
. For any a, b ∈ Qg , the theta function with

rational characteristic is defined as a translate of Riemann’s theta function multiplied by an
exponential factor

(41) θ

[
a
b

]
(z, t) = eπi(a

tta+2at(z+b))θ(z + ta+ b, t).

By writing out Eq. (41), we obtain

θ

[
a
b

]
(z, t) =

∑
u∈Zg

eπi((u+a)tt(u+a)+2(u+a)t(z+b)).

The Riemann’s theta function is θ
[
0
0

]
. Theta functions with rational characteristics have

the following properties:

θ

[
a+ n
b+m

]
(z, t) = e2πiatmθ

[
a
b

]
(z, t),

θ

[
a
b

]
(z +m, t) = e2πiatmθ

[
a
b

]
(z, t),

θ

[
a
b

]
(z + tm, t) = eπi(−2btm−mttm−2mtz)θ

[
a
b

]
(z, t)

(42)

with n,m ∈ Zn. All of these properties are immediately verified by writing them out. A
scalar obtained by evaluating a theta function with characteristic at z = 0 is called a theta
constant or theta-nulls. When the entries of column vectors a and b take values in {0, 1

2},

then the characteristics
[
a
b

]
are called the half-integer characteristics. The corresponding

theta functions with rational characteristics are called theta characteristics.
Points of order n on J (C) are called the 1

n -periods. Any point p of J (C) can be

written as p = t a + b. If
[
a
b

]
is a 1

n -period, then a, b ∈ ( 1
nZ/Z)g. The 1

n -period p can
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be associated with an element of H1(C,Z/nZ) as follows: Let a = (a1, · · · , ag)t, and
b = (b1, · · · , bg)t. We have

p = ta+ b =

(∑
ai

∫
Bi

ω1, · · · ,
∑

ai

∫
Bi

ωg

)t
+

(
b1

∫
A1

ω1, · · · , bg
∫
Ag

ωg

)

=

(∑
(ai

∫
Bi

ω1 + bi

∫
Ai

ω1

)
, · · · ,

∑(
ai

∫
Bi

ωg + bi

∫
Ai

ωg)

)t
=

(∫
C

ω1, · · · ,
∫
C

ωg

)t
with C =

∑
aiBi+ biAi. We identify the point p with the cycle C̄ ∈ H1(C,Z/nZ) where

C̄ =
∑
āiBi + b̄iAi, āi = nai and b̄i = nbi for all i; see [3] for more details.

12.2. Half-Integer Characteristics and the Göpel Group. In this section we study the
groups of half-integer characteristics. Any half-integer characteristic m ∈ 1

2Z
2g/Z2g is

given by

m =
1

2
m =

1

2

(
m1 m2 · · · mg

m′1 m′2 · · · m′g

)
,

where mi,m
′
i ∈ Z. For m =

[
m′

m′′

]
∈ 1

2Z
2g/Z2g, we define e∗(m) = (−1)4(m′)tm′′ . We

say that m is an even (resp. odd) characteristic if e∗(m) = 1 (resp. e∗(m) = −1). For any
curve of genus g, there are 2g−1(2g + 1) (resp., 2g−1(2g − 1) ) even theta functions (resp.,
odd theta functions). Let a be another half-integer characteristic. We define

ma =
1

2

(
t1 t2 · · · tg
t′1 t′2 · · · t′g

)
where ti ≡ (mi + ai) mod 2 and t′i ≡ (m′i + a′i) mod 2. We only consider characteristics
1
2q in which each of the elements qi, q′i is either 0 or 1. We use the following abbreviations:

|m| =
g∑
i=1

mim
′
i, |m, a| =

g∑
i=1

(m′iai −mia
′
i),

|m, a, b| = |a, b|+ |b,m|+ |m, a|,
(
m

a

)
= eπi

∑g
j=1mja

′
j .

The set of all half-integer characteristics forms a group G which has 22g elements.
We say that two half integer characteristics m and a are syzygetic (resp., azygetic) if
|m, a| ≡ 0 mod 2 (resp., |m, a| ≡ 1 mod 2) and three half-integer characteristics m, a,
and b are syzygetic if |m, a, b| ≡ 0 mod 2. A Göpel group G is a group of 2r half-integer
characteristics where r ≤ g such that every two characteristics are syzygetic. The elements
of the group G are formed by the sums of r fundamental characteristics; see [9, pg. 489]
for details. Obviously, a Göpel group of order 2r is isomorphic to Cr2 . The proof of the
following lemma can be found on [9, pg. 490].

Lemma 34. The number of different Göpel groups which have 2r characteristics is

(22g − 1)(22g−2 − 1) · · · (22g−2r+2 − 1)

(2r − 1)(2r−1 − 1) · · · (2− 1)
.

If G is a Göpel group with 2r elements, it has 22g−r cosets. The cosets are called
Göpel systems and are denoted by aG, a ∈ G. Any three characteristics of a Göpel
system are syzygetic. We can find a set of characteristics called a basis of the Göpel system
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which derives all its 2r characteristics by taking only combinations of any odd number of
characteristics of the basis.

Lemma 35. Let g ≥ 1 be a fixed integer, r be as defined above and σ = g − r. Then there
are 2σ−1(2σ + 1) Göpel systems which only consist of even characteristics and there are
2σ−1(2σ − 1) Göpel systems which consist of odd characteristics. The other 22σ(2r − 1)
Göpel systems consist of as many odd characteristics as even characteristics.

Proof. The proof can be found on [9, pg. 492]. �

Corollary 20. When r = g, we have only one (resp., 0) Göpel system which consists of
even (resp., odd) characteristics.

Consider s = 22σ Göpel systems which have distinct characters and denote them by

a1G, a2G, · · · , asG.
We have the following lemma.

Lemma 36. It is possible to choose 2σ + 1 characteristics from a1, a2, · · · , as, say ā1,
ā2, · · · , ā2σ+1, such that every three of them are azygetic and all have the same character.
The above 2σ + 1 fundamental characteristics are even (resp., odd) if σ ≡ 1, 0 mod 4
(resp.,≡ 2, 3 mod 4).

The proof of the following lemma can be found on [9, pg. 511].

Lemma 37. For any half-integer characteristics a and h, we have the following:

(43) θ2[a](z1, t)θ
2[ah](z2, t) =

1

2g

∑
e

eπi|ae|
(
h

ae

)
θ2[e](z1, t)θ

2[eh](z2, t),

where the sum runs over all half-integer characteristics.

We can use this relation to get identities among half-integer thetanulls. We know that we
have 2g−1(2g + 1) even characteristics. As the genus increases, we have multiple choices
for e. In the following, we explain how we reduce the number of possibilities for e and how
to get identities among thetanulls. First we replace e by eh and z1 = z2 = 0 in Eq. (43).
Eq. (43) can then be written as follows:

(44) θ2[a]θ2[ah] = 2−g
∑
e

eπi|aeh|
(

h

aeh

)
θ2[e]θ2[eh].

We have eπi|aeh|
(

h
aeh

)
= eπi|ae|

(
h
ae

)
eπi|ae,h|. Next we put z1 = z2 = 0 in Eq. (43) and add

it to Eq. (44) and obtain the following identity:

(45) 2θ2[a]θ2[ah] = 2−g
∑
e

eπi|ae|(1 + eπi|ae,h|)θ2[e]θ2[eh].

If |ae, h| ≡ 1 mod 2, the corresponding terms in the summation vanish. Otherwise 1 +
eπi|ae,h| = 2. In this case, if either e is odd or eh is odd, the corresponding terms in the
summation vanish again. Therefore, we need |ae, h| ≡ 0 mod 2 and |e| ≡ |eh| ≡ 0 mod 2,
in order to get nonzero terms in the summation. If e∗ satisfies |e∗| ≡ |e∗h∗| ≡ 0 mod 2 for
some h∗, then e∗h∗ is also a candidate for the left hand side of the summation. Only one
of such two values e∗ and e∗h∗ is taken. As a result, we have the following identity among
thetanulls

(46) θ2[a]θ2[ah] =
1

2g−1

∑
e

eπi|ae|
(
h

ae

)
θ2[e]θ2[eh],
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where a, h are any characteristics and e is a characteristics such that |ae, h| ≡ 0 mod 2,
|e| ≡ |eh| ≡ 0 mod 2 and e 6= eh.

By starting from the Eq. (43) with z1 = z2 and following a similar argument to the one
above, we can derive the identity,

(47) θ4[a] + eπi|a,h|θ4[ah] =
1

2g−1

∑
e

eπi|ae|{θ4[e] + eπi|a,h|θ4[eh]}

where a, h are any characteristics and e is a characteristic such that |h|+ |e, h| ≡ 0 mod 2,
|e| ≡ |eh| ≡ 0 mod 2 and e 6= eh.

Remark 7. |ae, h| ≡ 0 mod 2 and |eh| ≡ |e| ≡ 0 mod 2 implies |a, h|+ |h| ≡ 0 mod 2.

We use Eq. (46) and Eq. (47) to get identities among theta-nulls.

12.3. Hyperelliptic curves and their theta functions. A hyperelliptic curve C, defined
over C, is a cover of order two of the projective line P1. Let C −→ P1 be the de-
gree 2 hyperelliptic projection. We can assume that ∞ is a branch point. Let B :=
{α1, α2, · · · , α2g+1} be the set of other branch points and let S = {1, 2, · · · , 2g + 1}
be the index set of B and ζ : S −→ 1

2Z
2g/Z2g be a map defined as follows:

ζ(2i− 1) =

[
0 · · · 0 1

2 0 · · · 0
1
2 · · · 1

2 0 0 · · · 0

]
, ζ(2i) =

[
0 · · · 0 1

2 0 · · · 0
1
2 · · · 1

2
1
2 0 · · · 0

]
where the nonzero element of the first row appears in ith column. We define ζ(∞) to be[
0 · · · 0 0
0 · · · 0 0

]
. For any T ⊂ B, we define the half-integer characteristic as

ζT =
∑
ak∈T

ζ(k).

Let T c denote the complement of T in B. Note that ζB ∈ Z2g. If we view ζT as an
element of 1

2Z
2g/Z2g then ζT = ζT c . Let4 denote the symmetric difference of sets, that

is T4R = (T ∪ R) − (T ∩ R). It can be shown that the set of subsets of B is a group
under4. We have the following group isomorphism:

{T ⊂ B |#T ≡ g + 1 mod 2}/T ∼ T c ∼=
1

2
Z2g/Z2g.

For γ =

[
γ′

γ′′

]
∈ 1

2Z
2g/Z2g , we have

(48) θ[γ](−z, t) = e∗(γ)θ[γ](z, t).

It is known that for hyperelliptic curves, 2g−1(2g + 1)−
(

2g+1
g

)
of the even thetanulls are

zero. The following theorem provides a condition for the characteristics in which theta
characteristics become zero. The proof of the theorem can be found in [83].

Theorem 45. Let C be a hyperelliptic curve, with a set B of branch points. Let S be the
index set as above and U be the set of all odd values of S. Then for all T ⊂ S with even
cardinality, we have θ[ζT ] = 0 if and only if #(T4U) 6= g + 1, where θ[ζT ] is the theta
constant corresponding to the characteristics ζT .

When the characteristic γ is odd, e∗(γ) = 1. Then from Eq. (48) all odd thetanulls are
zero. There is a formula which satisfies half-integer theta characteristics for hyperelliptic
curves called Frobenius’ theta formula.
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Lemma 38 (Frobenius). For all zi ∈ Cg , 1 ≤ i ≤ 4 such that z1 + z2 + z3 + z4 = 0 and
for all bi ∈ Q2g , 1 ≤ i ≤ 4 such that b1 + b2 + b3 + b4 = 0, we have∑

j∈S∪{∞}

ζU (j)

4∏
i=1

θ[bi + ζ(j)](zi) = 0,

where for any A ⊂ B,

ζA(k) =

{
1 if k ∈ A,
−1 otherwise.

Proof. See [82, pg.107]. �
A relationship between thetanulls and the branch points of the hyperelliptic curve is

given by Thomae’s formula:

Lemma 39 (Thomae). For all sets of branch points B = {α1, α2, · · · , α2g+1}, there is a
constant A such that for all T ⊂ B, #T is even,

θ[ηT ](0; t)4 = (−1)#T∩UA
∏
i<j

i,j∈T4U

(αi − αj)
∏
i<j

i,j /∈T4U

(αi − αj)

where ηT is a non singular even half-integer characteristic corresponding to the subset T
of branch points.

See [82, pg. 128] for the description of A and [82, pg. 120] for the proof. Using
Thomae’s formula and Frobenius’ theta identities we express the branch points of the
hyperelliptic curves in terms of even thetanulls. In [15] and [89] it is shown how such
relations are computed for genus g = 2, 3.

12.4. Superelliptic curves and their theta functions. Generalizing the theory of theta
functions of hyperelliptic curves to all cyclic covers of the projective line has been the
focus of research of the last few decades. The main efforts have been on generalizing
the Thomae’s formula to such curves. In the literature of Riemann surfaces such curves
are called for historical reasons the Cn curves. As a more recent development and new
developments on this topic see [31].

13. JACOBIAN VARIETIES

Let C be a smooth, irreducible, algebraic curve of genus g ≥ 2, defined over a field K.
Let Sd denote the symmetric group of permutations. Then Sd acts on Cd as follows:

Sd × Cd → Cd

(σ, (P1, . . . , Pd))→ (. . . , Pσi , . . . )
(49)

We denote the orbit space of this action by Symd(C). Denote by Divd(C) the set of degree
v divisors in Div(C) and by Div+,d(C) the set of positive ones in Divd(C).

Lemma 40. Div+ d(C) ∼= Symd(C).

Let j : Cd ↪→ P(n+1)d−1 be the Segre embedding. Let R := C[Cd] be the homogenous
coordinate ring of Cd. Then Sd acts on R by permuting the coordinates. This action
preserves the grading. Then j is equivariant under the above action. Hence, the ring of

albanian-j-math.com/archives/2019-03.pdf

http://albanian-j-math.com/archives/2019-03.pdf


FROM HYPERELLIPTIC TO SUPERELLIPTIC CURVES 180

invariants RSd is finitely generated by homogenous polynomials f0, . . . , fN of degree M .
Thus, we have

C[f0, . . . , fN ] ⊂ {f ∈ RSd such that M |deg f} ⊂ RSd .

Hence, every element in C[f0, . . . , fN ] we can express it as a vector in PN via the basis
{f0, . . . , fN}. Then we have an embedding

Symd(C) ↪→ PN

with the corresponding following diagram:

Cd

��

� � j // P(n+1)d−1

��
Symd(C) �

� // PN

Thus, any divisorD ∈ Div+ d(C) we identify with its correspondent point in Symd(C) and
then express it in coordinates in PN . The variety Symd(C) is smooth because Symd(C) \
{∆ = 0} is biholomorphically to an open set in Cd.

The known result which we will use in our approach is the following:

Theorem 46. Let C be a genus g ≥ 2 curve. The map

φ : Symg(C) −→ Jac C∑
Pi −→

∑
Pi − g∞

is surjective. In other words, for every divisor D of degree zero, there exist P1, . . . , Pg
such that D is linearly equivalent to

∑g
i=1 Pi − g∞.

See [81, pg. 3.30]. The simplest case (hyperelliptic case) of the above construction was
suggested by Jacobi and worked out by Mumford in [81]. We explained it briefly below.

13.1. Hyperelliptic curves. We would like to see how the above construction applies to
hyperelliptic curves. Let’s start with a hyperelliptic curve C with affine equation

y2 = f(x) =

2g+1∏
i=1

(x− αi)

defined over a field k. Then C has a point at infinity and (x)∞ = 2 · ∞ and (y)∞ =
(2g + 1) · ∞.

Denote by Divd(C) the set of degree v divisors in Div(C) and by Div+,d(C) the set of
positive ones in Divd(C). Then Div+,d

0 (C) is the set

Div+,d
0 (C) =

{
D ∈ Div+,d(C) | if D =

d∑
i=1

Pi, then Pi 6=∞, for all i

and Pi 6= τPj , for i 6= j}

where τ is the hyperelliptic involution. Let D ∈ Div+,d
0 (C) given by D =

d∑
i=1

pi, where

pi = (λi, ui). By x(pi) we denote the value of x at pi. Thus x(pi) = λi and y(pi) = ui.
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We follow the idea of Jacobi [62] explained in details in [81] and define

U(x) =

d∏
i−1

(x− λi)(50)

We want to determine a unique polynomial V (x) of degree < d− 1 such that

V (λi) = ui, 1 ≤ i ≤ d.
Then we have:

Lemma 41. The unique polynomial V (x) of degree ≤ d− 1 such that

V (λi) = ui, 1 ≤ i ≤ d
is given by

(51) V (x) =

d∑
i=1

ui

∏
j 6=i

(x− λi)∏
j 6=i

(λi − λj)

Moreover, U(x) | (f(x)− V (x)2).

Let W (x) be defined as follows

W (x) =
1

U(x)

(
f(x)− V (x)2

)
,(52)

which from the above is a polynomial. Then we have the following:

Proposition 14. There is a bijection between Div+,d
0 (C) and triples (U, V,W ) such that

U and W are monic and deg V ≤ d− 1, deg U = d, deg W = 2g + 1− d.

Proof. See [85, Prop. 1.2]. �
Polynomials U(x), V (x), and W (x) are called Jacobi polynomials. Take a genus

g ≥ 2 hyperelliptic curve C with at least one rational Weierstrass point given by the affine
Weierstrass equation

(53) WC : y2 + h(x) y = x2g+1 + a2gx
2g + · · ·+ a1x+ a0

over k. We denote the prime divisor corresponding to P∞ = (0 : 1 : 0) by p∞. The affine
coordinate ring of WC is

O = k[x, y]/(y2 + h(x), y − (x2g+1 + a2gx
2g + · · ·+ a1x+ a0))

and so prime divisors p of degree d of C correspond to prime ideals P 6= 0 with [O/P :
k] = d. Let ω be the hyperelliptic involution of C. It operates on O and on Spec(O) and
fixes exactly the prime ideals which "belong" to Weierstrass points, i.e. split up in such
points over k̄.

Following Mumford [85] we introduce polynomial coordinates for points in Jac k(C).
The first step is to normalize representations of divisor classes. In each divisor class c ∈
Pic0(k) we find a unique reduced divisor

D = n1p1 + · · ·+ nrpr − d p∞
with

r∑
i=1

nideg (pi) = d ≤ g,
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pi 6= ω(pj) for i 6= j and pi 6= p∞ (we use Riemann-Roch and the fact that ω induces
−idJC ).

Using the relation between divisors and ideals in coordinate rings, we obtain that

n1p1 + · · ·+ nrpr

corresponds to an ideal I ⊂ O of degree d and the property that if the prime ideal Pi is
such that both P and ω(P ) divide I then it belongs to a Weierstrass point. The ideal I is a
free O-module of rank 2 and we have

I = k[x]u(x) + k[x](v(x)− y).

u(x), v(x) ∈ k[x], u are monic of degree d, deg (v) < d, and

u |
(
v2 + h(x)v − f(x)

)
.

Moreover, c is uniquely determined by I , I is uniquely determined by (u, v) and so we can
take (u, v) as coordinates for c. Polynomials u and v are determined by the following:

Theorem 47 (Mumford representation). Let C be a hyperelliptic curve of genus g ≥ 2 with
affine equation

y2 + h(x) y = f(x),

where h, f ∈ k[x], deg f = 2g + 1, deg h ≤ g.
Every non-trivial group element c ∈ Pic0

C(k) can be represented in a unique way by a
pair of polynomials u, v ∈ k[x], such that

i) u is a monic,
ii) deg v < deg u ≤ g,
iii) u | v2 + vh− f .

How does one find the polynomials u, v? We can assume without loss of generality that
k = k̄ and identify prime divisors pi with points Pi = (xi, yi) ∈ k×k. Taking the reduced
divisor D = n1p1 + · · ·+ nrpr − dp∞ with r = d ≤ g, we have

u(x) =

r∏
i=1

(x− xi)ni .

Since (x− xi) occurs with multiplicity ni in u(x) we must have for v(x) that(
d

dx

)j [
v(x)2 + v(x)h(x)− f(x)

]
x=xi

= 0,

and one determines v(x) by solving this system of equations; see [32] for details.
Take the divisor classes represented by [(u1, v1)] and [(u2, v2)] and in "general posi-

tion". Then the product is represented by the ideal I ∈ O given by

〈u1u2, u1(y − v2), u2(y − v1), (y − v1)(y − v2)〉.

We have to determine a base, and this is done by Hermite reduction. The resulting ideal
is of the form 〈u′3(X), v′3(X) + w′3(X)Y 〉 but not necessarily reduced. To reduce it one
uses recursively the fact that u | (v2 − hv− f). Generalization of this procedure is called
Cantor’s algorithm; see [32] for details.

Another approach to describing addition in the Jacobians of hyperelliptic curves is to
use approximation by rational functions; see [69]. This is analogous to the geometric
method used for elliptic curves.
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For simplicity we assume that k = k̄. Let D1 and D2 be reduced divisors on Jac kC
given by

D1 = p1 + p2 + · · ·+ ph1 − h1p∞,

D2 = q1 + q2 + · · ·+ qh2
− h2p∞,

(54)

where pi and qj can occur with multiplicities, and 0 ≤ hi ≤ g, i = 1, 2. As usual we
denote by Pi respectively Qj the points on C corresponding to pi and qj .

Let g(X) = b(X)
c(X) be the unique rational function going through the points Pi, Qj . In

other words we are determining b(X) and c(X) such that h1 + h2 − 2r points Pi, Qj lie
on the curve

Y c(X)− b(X) = 0.

This rational function is uniquely determined and has the form

(55) Y =
b(X)

c(X)
=

b0X
p + . . . bp−1X + bp

c0Xq + c1Xq−1 + · · ·+ cq

where

p =
h1 + h2 + g − 2r − ζ

2
, q =

h1 + h2 − g − 2r − 2 + ζ

2
,

ζ is the parity of h1 + h2 + g. By replacing Y from Eq. (55) in Eq. (53) we get a
polynomial of degree max{2p, 2q(2g − 1)}, which gives h3 ≤ g new roots apart from
the X-coordinates of Pi, Qj . Denote the corresponding points on C by R1, . . . , Rh3 and
R̄1, . . . , R̄h3

are the corresponding symmetric points with respect to the y = 0 line. Then,
we define

D1 +D2 = R̄1 + . . . R̄h3 − h3O.
For details we refer the reader to [69].

Remark 8. For g = 1, 2 we can take g(X) to be a cubic polynomial.

13.1.1. Curves of genus 2. Let C be a genus 2 curve defined over a field k with a rational
Weierstrass point. If k 6= 2, 3 the curve C is birationally isomorphic to an affine plane
curve with equation

(56) Y 2 = a5X
5 + a4X

4 + a3X
3 + a2X

2 + a1X + a0.

Let p∞ be the prime divisor corresponding to the point at infinity. Reduced divisors in
generic position are given by

D = p1 + p2 − 2p∞ ,

where P1(x1, y1), P2(x2, y2) are points in C(k) (since k is algebraically closed) and x1 6=
x2. For any two divisors D1 = p1 + p2− 2p∞ and D2 = q1 + q2− 2p∞ in reduced form,
we determine the cubic polynomial

(57) Y = g(X) = b0X
3 + b1X

2 + b2X + b3,

going through the points P1(x1, y1), P2(x2, y2), Q1(x3, y3), and Q2(x4, y4). This cubic
will intersect the curve C at exactly two other points R1 and R2 with coordinates

(58) R1 = (x5, g(x5)) and R2 = (x6, g(x6)) ,

where x5, x6 are roots of the quadratic equation

(59) x2 +

(
4∑
i=1

xi

)
x+

b23 − a5

b20
∏4
i=1 xi

= 0.
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FIGURE 2. A geometric interpretation of addition on a 2-dimensional Jacobian.

Let us denote by R1 = (x5,−g(x5)) and R2 = (x6,−g(x6)). Then,

(60) [D1]⊕ [D2] = [R1 +R2 − 2p∞].

Example 2. Let C be a genus 3 hyperelliptic curve with equation y2 = f(x) where deg f =

7. Then g(x) = b(x)
c(x) must be such that

(b(x))
2 − c(x) · f(x) = 0,

must have degree 9. Hence, deg b = 4 and deg c = 2. This is the first case where one has
to use a rational function instead of a polynomial.

13.2. Addition on superelliptic Jacobians, generalized Jacobi polynomials. A natural
question is the following:

Problem 8. Is it possible to generalize the above procedure to a general curve?

A complete answer to Problem 8 would be challenging for the very simple reason that
in general we are not even able to write down an equation for a curve. However, from
Section 7 we know that we can write down precise equations for superelliptic curves. Thus,
the following question seems more reasonable:

Problem 9. Is it possible to generalize the Cantor’s algorithm to superelliptic curves?

The main difference between hyperelliptic and superelliptic curves is that the hyperel-
liptic involution τ : (x, y) → (x,−y) is now replaced by the order n ≥ 2 automorphism
α : (x, y)→ (x, ζn y), where ζn is a primitive n-th root of unity. Hence, a naive extension
of the Cantor’s algorithm to superelliptic curves would be to determine the degrees of the
b(x) and c(x) now for the curve C : yn = f(x) so that the graph of y = b(x)

c(x) intersect the
curve C in exactly g places R̄1, . . . , R̄g . This is not possible. Hence, we have to attempt
a more general function, which is not necessary rational in one variable, in order to solve
the problem. A further discussion on this is intended in [66].

There are a few issues that still are mysterious. For example, there is a long and detailed
discussion in [85], [91], [90]. on what the Jacobi polynomials mean in terms of differential
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equations. Do the corresponding generalized Jacobi polynomials for superelliptic curves
have any significance in the theory of differential equations along the lines of [91], et al.

Problem 10. Investigate whether Jacobi polynomials of hyperelliptic curves can be gener-
alized to superelliptic curves and determine their significance in the theory of differential
equations.

13.3. Superelliptic Jacobians. A superelliptic Jacobian is the Jacobian of a superelliptic
curve. We assume that the reader is familiar with the basic definitions of Abelian varieties.
For details one can check [85] or [32].

LetA, B be abelian varieties over a field k. We denote the Z-module of homomorphisms
A 7→ B by Hom (A,B) and the ring of endomorphisms A 7→ A by End A. In the
context of Linear Algebra it can be more convenient to work with the Q-vector spaces
Hom 0(A,B) := Hom (A,B) ⊗Z Q, and End 0A := End A ⊗Z Q. Determining End A
or End 0A is an interesting problem on its own; see [88].

A homomorphism f : A → B is called an isogeny if Img f = B and ker f is a finite
group scheme. If an isogenyA → B exists we say thatA and B are isogenous. The degree
of an isogeny f : A → B is the degree of the function field extension

deg f := [k(A) : f?k(B)] .

It is equal to the order of the group scheme ker(f), which is, by definition, the scheme
theoretical inverse image f−1({0A}).

The group of k̄-rational points has order

#(ker f)(k̄) = [k(A) : f?k(B)]sep,

where [k(A) : f?k(B)]sep denotes the degree of the maximally separable extension in
k(A)/f?k(B). f is a separable isogeny if and only if

# ker f(k̄) = deg f.

The following result should be compared with the well known result for quotient groups of
abelian groups.

Lemma 42. For any Abelian variety A/k there is a one to one correspondence between
the finite subgroup schemes K ≤ A and isogenies f : A → B, where B is determined up
to isomorphism. Moreover, K = ker f and B = A/K.

Isogenous Abelian varieties have isomorphic endomorphism rings.

Lemma 43. If A and B are isogenous then End 0(A) ∼= End 0(B).

Lemma 44. IfA is a absolutely simple Abelian variety then every endomorphism not equal
0 is an isogeny.

We can assume that k = k̄. Let f be a nonzero isogeny of A. Its kernel ker f is a
subgroup scheme of A (since it is closed in the Zariski topology because of continuity
and under ⊕ because of homomorphism). It contains 0A and so its connected component,
which is, by definition, an Abelian variety.

Since A is simple and f 6= 0 this component is equal to {0A}. But it has finite index in
ker f (Noether property) and so ker f is a finite group scheme.

The ring of endomorphisms of generic Abelian varieties is "as small as possible". For
instance, if char (k) = 0, then End (A) = Z in general. If k is a finite field, the Frobenius
endomorphism will generate a larger ring, but again, in the generic case. Determining
endomorphism rings of superelliptic Jacobians is an interesting problem. A concrete result
is the following [112]:
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Theorem 48 (Zarhin). Let C be a hyperelliptic curve with affine equation y2 = f(x),
n = deg f , and f ∈ Q[x]. If Gal(f) is isomorphic to An or Sn then End Q (Jac C) ∼= Z.

The theorem is actually true over any number field K. See [113] for detailed results on
endomorphisms of Jacobians of hyperelliptic and superelliptic curves. It is an interesting
task to find Abelian varieties with larger endomorphism rings. This leads to the theory of
real and complex multiplication. For instance, the endomorphism ring of the Jacobian of
the Klein quartic contains an order in a totally real field of degree 3 over Q.

An abelian variety A/k is said to have complex multiplication over k if End 0
k(A) is

larger than Z. Normally we say that an Abelian variety with complex multiplication by
CM; see next section for more details.

13.4. Jacobians of genus 2 curves. For char k 6= 2, a point p in the moduli spaceM2 is
determined by the tuple (J2, J4, J6, J10), for discriminant D := J10 6= 0. In the case of
char k = 2 another invariant J8 is needed.

For everyD := J10 > 0 there is a Humbert hypersurfaceHD inM2 which parametrizes
curves C whose Jacobians admit an optimal action onOD; see [49]. Points on Hn2 param-
etrize curves whose Jacobian admits an (n, n)-isogeny to a product of two elliptic curves.

For every quaternion ring R there are irreducible curves SR,1, . . . , SR,s in M2 that
parametrize curves whose Jacobians admit an optimal action of R. Those SR,1, . . . , SR,s
are called Shimura curves.

We have the following:

Proposition 15. Jac (C) is a geometrically simple Abelian variety if and only if it is not
(n, n)-decomposable for some n > 1.

The endomorphism rings of Abelian surfaces can be determined by the Albert’s classi-
fication and results in [88]. We summarize in the following:

Proposition 16. The endomorphism ring End 0
Q (Jac C) of an abelian surface is either

Q, a real quadratic field, a CM-field of degree 4, a non-split quaternion algebra over Q,
F1 ⊕ F2, where each Fi is either Q or an imaginary quadratic field, the Mumford-Tate
group F , where F is either Q or an imaginary quadratic field.

Remark 9. Genus 2 curves with extra involutions have endomorphism ring larger than Z.
Let C be a genus 2 curve defined over Q. If Aut(C) is isomorphic to the Klein 4-group V4,
then C is isomorphic to a curve C′ with equation

y2 = f(x) = x6 − ax4 + bx2 − 1.

We denote u = a3 + b3 and v = ab. The discriminant

∆f = −26 ·
(
27− 18v + 4u− u2

)2
,

is not a complete square in Q for any values of a, b ∈ Q. In this case GalQ(f) has order
24. There is a twist of this curve, namely y2 = f(x) = x6 +a′x4 + b′x2 + 1, in which case
∆f is a complete square in Q and GalQ(f) has order 48. In both cases, from Thm. 48 we
have that End Q(Jac C′) 6= Z.

Next, we turn our attention to determining the endomorphism ring of abelian surfaces.
Let us first recall a few facts on characteristic polynomials of Frobenius for abelian sur-
faces. The Weil q-polynomial arising in genus 2 have the form

(61) f(T ) = T 4 − aT 3 + (b+ 2q)T 2 − aqT + q2,

Albanian J. Math. 13 (2019), no. 1, 107-200

http://albanian-j-math.com/vol-13.html


MALMENDIER, SHASKA 187

for a, b ∈ Z satisfying the inequalities

2|a|√q − 4q ≤ b ≤ 1

4
a2 ≤ 4q.

We follow the terminology from [20]. Let C be a curve of genus 2 over Fq and J = Jac C.
Let f be the Weil polynomial of J in Eq. (61). We have that #C(Fq) = q + 1 − a,
#J(Fq) = f(1) and it lies in the genus-2 Hasse interval

H(2)
q =

[
(
√
q − 1)4, (

√
q + 1)4

]
.

In [20] are constructed decomposable (3, 3)-Jacobians with a given number of rational
points by glueing two elliptic curves together.

Next we briefly summarize some of the results obtained in [72] for End K(A) in terms
of the characteristic polynomial of the Frobenius. We let K be a number field and MK be
the set of norms ofK. LetA be an abelian surface defined overK and fv the characteristic
Frobenius for every norm v ∈MK .

Lemma 45. Let v be a place of characteristic p such thatA has good reduction. ThenAv
is ordinary if and only if the characteristic polynomial of the Frobenius

fv(x) = x4 + ax3 + bx2 + apx+ p2,

satisfies b 6≡ 0 mod p.

Then from [72, Lemma 4.3] we have the following.

Lemma 46. Let A be an absolutely simple abelian surface. The endomorphism algebra
End 0

K̄(A) is non-commutative (thus a division quaternion algebra) if and only if for every
v ∈MK , the polynomial fv(x12) is a square in Z[x].

The following gives a condition for geometrically reducible abelian surfaces.

Proposition 17 ([72]). i) IfA/K is geometrically reducible then for all v ∈Mk for which
A has good reduction the polynomial fv(x12) is reducible in Z[x].

ii) If C is a smooth, irreducible genus 2 curve with affine equation y2 = f(x) such that
f(x) ∈ K[x] is an irreducible polynomial of degree 5 then Jac C is absolutely irreducible.

13.5. Decomposition of superelliptic Jacobians. Let C be a superelliptic curve and σ ∈
Aut(Cg) such that its projection σ̄ ∈ Aut(C) has order m ≥ 2 and equation yn = f(x).
We can choose a coordinate in P1 such that σ̄(x) = xm. Since σ permutes the Weierstrass
points of C and it has two fixed points then the equation of the curve will be yn = f(xm)
or yn = xf(xm); see [16] for details of this part.

Assume that C has equation

(62) yn = f(xm) := xδm + a1x
(δ−1)m · · ·+ aδ−1x

m + 1.

We assume that σ̄ lifts to G to an element of order m. Then, σ(x, y)→ (ζmx, y). Denote
by t : (x, y) → (x, ζny) its superelliptic automorphism. Since t is central in G then
tσ = σt. We will denote by C1 and C2 the quotient curves C/〈σ〉 and C/〈tσ〉 respectively.
The next theorem determines the equations of C1 and C2. We denote by K the function
field of C and by F and L the function fields of C1 and C2 respectively.

Theorem 49. LetK be a genus g ≥ 2 level n superelliptic field and F a degreem subfield
fixed by σ : (s, y)→ (ζms, y).

i) Then, K = k(x, y) such that

(63) yn = f(xm) := xδm + a1x
(δ−1)m · · ·+ aδ−1x

m + 1.
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for ∆(f, x) 6= 0.
ii) F = k(U, V ) where U = xm, V = y and

(64) V n = f(U).

iii) There is another subfield L = k(u, v) where u = xm, v = xiy, and

(65) vn = u · f(u),

for m = λn and i = λ(n− 1).

K = k(x, y)

n

��
m

xx

lcm(m,n)

&&
F = k(xm, y)

n

��

k(x)

m

xx

lcm(m,n)

&&

L = k(xm, xiy)

n

��
k(xm, yn) k(xm, (xiy)n)

FIGURE 3. Lattice of subfields

For the rest of this section we want to find necessary and sufficient conditions on n and
m such that the Jacobian Jac (C) is isogenous to the product Jac (C1)× Jac (C2). First we
focus on hyperelliptic curves.

Theorem 50. Let Cg be a hyperelliptic curve. We denote its reduced automorphism group
by Aut(Cg) ∼= Cm = 〈σ〉. Then Cg is isomorphic to a curve with equation

Cg : Y 2 = xδm + a1x
(δ−1)m + · · ·+ aδ−1x

m + 1.

There exists subcovers πi : Cg → Ci, for i = 1, 2 such that

C1 : Y 2 = Xδ + a1X
δ−1 + · · ·+ aδ−1X + 1,

C2 : Y 2 = X(Xδ + a1X
δ−1 + · · ·+ aδ−1X + 1).

The Jacobian of C is isogenous to the product

Jac (C) ∼= Jac (C1)× Jac (C2)

if and only if the full automorphism group Aut(C) is isomorphic to the Klein 4-group V4.

Next, we generalize the previous theorem.

Theorem 51. Let Cg be a level n superelliptic curve and Cm = 〈σ̄〉 ↪→ Aut(Cg), where
m ≥ 2 and the equation of Cg is yn = f(xm), with deg (f) = d = δ m, d > n. Then there
exist degree m coverings π : Cg → Ci, i = 1, 2 where

C1 : yn = f(x) and C2 : yn = xf(x).

Then,
Jac (C) ∼= Jac (C1)× Jac (C2)

if and only if

(66) δ(n− 1)(m− 2) = 1− (gcd(δ + 1, n) + gcd(δ, n)− gcd(δm, n)) .
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Proof. Let Cg be a superelliptic curve with and extra automorphism of order m ≥ 2 and
equation yn = f(xm). There is the superelliptic automorphism

τ : (x, y)→ (x, ζny), and σ̄ : (x, y)→ (ζmx, y).

We denote by σ the lifting of σ̄ in Aut(C). Then, στ = τσ.
Let H1 := 〈σ〉 and H2 := 〈στ〉 be subgroups in G. Then, |H1| = n and |H2| =

lcm (n,m). Thus, we haveH := H1×H2 ↪→ G. It is easy to check that g (Cg/(H1H2)) =
0.

Moreover, σ and στ fix the curves

C1 : Y n = Xδ + a1X
δ−1 + · · ·+ aδ−1X + 1

and
C2 : Y n = X(Xδ + a1X

δ−1 + · · ·+ aδ−1X + 1).

Let g1 and g2 denoted their genera respectively. Then

g1 = 1 +
1

2
(nδ − n− δ − gcd(δ, n))

and

g2 = 1 +
1

2
(n(δ + 1)− n− (δ + 1)− gcd(δ + 1, n)) .

Hence, we have

g1 + g2 =
3

2
+ nδ − n

2
− δ − 1

2
(gcd(δ, n) + gcd(δ + 1, n)) .

The genus of C is

g = 1 +
1

2
(nδm− n− δm− gcd(mδ, n)) .

Then, g = g1 + g2 implies that

δ(n− 1)(m− 2) = 1− (gcd(δ + 1, n) + gcd(δ, n)− gcd(δm, n)) .

Thus,
Jac (Xg) ∼= Jac (C/H1)× Jac (C/H2)

which completes the proof. �

13.6. Jacobians with superelliptic components. Next let us consider a family of non-
hyperelliptic curves whose Jacobians decompose into factors which are superelliptic Jaco-
bians. In [111] were studied a family of curves in Ps+2 given by the equations

(67)


zw = c0x

2 + c1xw + c2w
2

yr1 = h1(z, w) := zr + c1,1z
r−1w + · · ·+ cr−1,1zw

r−1 + wr,

. . .

yrs = hs(z, w) := zr + c1,sz
r−1w + · · ·+ cr−1,szw

r−1 + wr,

where ci ∈ k, i = 0, 1, 2, and ci,j ∈ k for i = 1, · · · , r, j = 1, · · · , s. The variety Cr,s
is an algebraic curve since the function field of Cr,s is a finite extension of k(z). Cr,s is a
complete intersection.

Let Cr,s be as above. Assume that Cr,s is smooth and c0 6= 0. Then the genus of Cr,s is

g(Cr,s) = (r − 1)(rs · 2s−1 − 2s + 1).

r ≥ 3 and s ≥ 1, then Cr,s is non-hyperelliptic.
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Fix r ≥ 2. Let λ be an integer such that 1 ≤ λ ≤ s. Define the superelliptic curve
Cr,λ,m as follows

Cr,λ,m : Y r =

λ∏
i=1

hi(X
m, 1),

for some m ≥ 2. The right side of the above equation has degree d = rmλ. Using
Lemma 12 we have that

g(Cr,λ,m) = 1 +
1

2

(
r2mλ− r −mλr − gcd(λrm, r)

)
.

Hence,

(68) g(Cr,λ,m) = 1 +
r

2
((r − 1)λm− 2) .

In [16] automorphism groups of such curves were determined. We have Aut (Cr,λ,m) ∼=
Cm or Aut (C2,λ,m) ∼= D2m. From Thm. 17 we can now determine the automorphism
group as follows.

If Aut (Cr,λ,m) ∼= Cm, then G ∼= Cmn or G is isomorphic to

〈r, σ| rn = 1, σm = 1, σrσ−1 = rl〉

where (l,n)=1 and lm ≡ 1 (mod n). But if (m,n) = 1, then l = n− 1.
If Aut (Cr,λ,m) ∼= D2m, then

(1) If n is odd then G ∼= D2m × Cn.
(2) If n is even and m is odd then G ∼= D2m × Cn or G is isomorphic to the group

with presentation

〈r, σ, t| rn = 1, σ2 = r, t2 = rn−1, (σt)m = r
n
2 , σrσ−1 = r, trt−1 = r〉.

(3) If n is even and m is even then G is isomorphic to one of the following groups
D2m × Cn, D2mn, or one of the following

G1 = 〈r, σ, t| rn = 1, σ2 = r, t2 = 1, (σt)m = 1, σrσ−1 = r, trt−1 = rn−1〉,
G2 = 〈r, σ, t| rn = 1, σ2 = r, t2 = rn−1, (σt)m = 1, σrσ−1 = r, trt−1 = r〉,
G3 = 〈r, σ, t| rn = 1, σ2 = r, t2 = 1, (σt)m = r

n
2 , σrσ−1 = r, trt−1 = rn−1〉,

G4 = 〈r, σ, t| rn = 1, σ2 = r, t2 = rn−1, (σt)m = r
n
2 , σrσ−1 = r, trt−1 = r〉.

Let Cr,s be a generic algebraic curve defined over an algebraically closed field k and
Cr,λ,m as above. Then we have the following.

Theorem 52 ([16]). The Jacobian Jac (Cr,s) is isogenous to the product of the Cr,λ,m, for
1 ≤ λ ≤ s, namely

Jac (Cr,s) ∼=
s∏

1=λ

Jac (Cr,λ,m),

if and only if

(69) r = 4 · 1 + s− 2s

ms(s+ 1)− s · 2s+1
.

Proof. We denote by σi(x, yi, z) → (x, ζryi, z), for i = 1, . . . , s. Then the quotient
spaces Cr,s/〈σi〉 are the curves Cr,i,s, for i = 1, . . . , s. Since σi is a central element in
G = Aut(Cr,s) then Hi := 〈σi〉 / G, for all i = 1, . . . , s. Obviously, for all i 6= j we have
Hi ∩Hj = {e}. Hence, H1, . . . ,Hs forms a partition for G.
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The genus for every Cr,i,s, by Lemma 12 is given by Eq. (68). Then we have
s∑

λ=1

g (Cr,λ,m) =

s∑
λ=1

(
1 +

r

2
((r − 1)λm− 2)

)
= s(r − 1)

(r
4
m(s+ 1)− 1

)
.

Then we have that
r

4
ms(s+ 1)− s = rs · 2s−1 − 2s + 1.

Hence,

r = 4 · 1 + s− 2s

ms(s+ 1)− s · 2s+1
.

This completes the proof. �

Remark 10. For m = 2 this result is the case of Theorem 4.2 in [111]. We get r = 2
s .

Hence, s = 1 or s = 2. Therefore, Theorem 4.2 in [111] is true only for curves Fm,1 or
Fm,2.

Suppose r,m, s ∈ N satisfy Eq. 69. Thenmrs = 4k for some odd integer k. Moreover,
i) If s ≡ 1 ( mod 2), then s = 1.
ii) If s ≡ 2 ( mod 4), then s = 2t for some odd integer twhich satisfies 4t ≡ 1 ( mod t).

Furthermore, t is a multiple of 3.
iii) If s ≡ 0 ( mod 4), then s = 4u for some odd integer u which satisfies 16u ≡

1 ( mod u). Furthermore, u is a multiple of 3 or 5.

14. JACOBIANS WITH COMPLEX MULTIPLICATION

We start with some preliminaries. An Abelian variety defined over k is an absolutely
irreducible projective variety defined over k which is a group scheme. A morphism of
Abelian varieties A to B is a homomorphism if and only if it maps the identity element
of A to the identity element of B. An abelian variety A/k is called simple if it has no
proper non-zero Abelian subvariety over k, it is called absolutely simple (or geometrically
simple) if it is simple over the algebraic closure of k.

Let A, B be abelian varieties over a field k. We denote the Z-module of homomor-
phisms A 7→ B by Hom (A,B) and the ring of endomorphisms A 7→ A by End A.
It turns out to be more convenient to work with the Q-vector spaces Hom 0(A,B) :=
Hom (A,B) ⊗Z Q, and End 0A := End A ⊗Z Q. Determining End A or End 0A is an
interesting problem on its own; see [88].

The ring of endomorphisms of generic Abelian varieties is "as small as possible". For
instance, if char (k) = 0 then End (A) = Z in general. If k is a finite field, the Frobenius
endomorphism will generate a larger ring, but again, this will be all in the generic case.

End 0(A) is a Q-algebra of dimension≤ 4 dim(A)2. Indeed, End 0(A) is a semi-simple
algebra, and by duality one can apply a complete classification due to Albert of possible
algebra structures on End 0(A), which can be found on [85, pg. 202].

We say that an abelian variety A has complex multiplication over a field K if the
algebra End 0

K(A) contains a commutative, semisimple Q-algebra of dimension 2 dimA.
The natural question is which algebras occur as endomorphism algebras? The situation

is well understood if k has characteristic 0 (due to Albert) but wide open in characteristic
p > 0.

For g = 1 (elliptic curves) everything is explicitly known due to M. Deuring. The
endomorphism ring of an elliptic curve over a finite field Fq is never equal to Z since there
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is the Frobenius endomorphism φFq,E induced by the Frobenius automorphism of Fq which
has degree q.

Let C be a genus 2 curve defined over k. What can we say about the End 0
k (Jac C)?

Proposition 18. Given a genus-two curve C defined over Q and its abelian surface Jac C,
the endomorphism ring End 0

Q (Jac C) is either Q, a real quadratic field, a CM field of
degree 4, a non-split quaternion algebra over Q, F1⊕F2, where each Fi is either Q or an
imaginary quadratic field, the Mumford-Tate group F , where F is either Q or an imaginary
quadratic field.

Remark 11. Genus 2 curves with extra involutions have endomorphism ring larger than
Z. Let C be a genus 2 curve defined over Q. If Aut(C) is isomorphic to the Klein 4-group
V4, then C is isomorphic to a curve C′ with equation

y2 = f(x) = x6 − ax4 + bx2 − 1.

We denote u = a3 + b3 and v = ab. The discriminant

∆f = −26 ·
(
27− 18v + 4u− u2

)2
,

is not a complete square in Q for any values of a, b ∈ Q. In this case GalQ(f) has order
24. There is a twist of this curve, namely y2 = f(x) = x6 + a′x4 + b′x2 + 1, in which
case ∆f is a complete square in Q and GalQ(f) has order 48. In both cases, from 48 we
have that End Q(Jac C′) 6= Z.

The following are proved in [113].

Theorem 53. Let K be a field, char K 6= 2 and f(x) ∈ K[x] an irreducible polynomial
with deg f ≥ 5. If one of the following conditions is satisfied:

• char K 6= 3 and GalK(f) ∼= An or Sn
• GalK(f) ∼= Mn (Mathiew group) for n = 11, 12, 22, 23, 24

then the curve C : y2 = f(x) has End J = Z. In particular, Jac C is absolutely simple.

Theorem 54. If f(x) is as above, char K = 0, and p an odd prime then the superelliptic
curve C : yp = f(x) has Jac (C) absolutely simple and End (Jac C) ∼= Z[εp].

14.1. Curves with many automorphisms. Let C be e genus g ≥ 2 curve defined over C,
p ∈Mg its corresponding moduli point, and G := AutC(C).

We say that C has many automorphisms if p ∈Mg has a neighborhood U (in the com-
plex topology) such that all curves corresponding to points in U \ {p} have automorphism
group strictly smaller than p.

Lemma 47. The following are equivalent:
• C has many automorphisms
• There exists a subgroup H < G such that g (C/H) = 0 and C → C/H has at

most 3 branch points.
• The quotient C/G has genus 0 and C → C/G has at most three points.

Question 1 (F. Oort). If C has many automorphisms, does End (Jac C) have complex mul-
tiplication?

Wolfart answered this question for all curves of genus g ≤ 4. For the remainder of this
paper we will determine which superelliptic curves of genus g ≥ 10 have CM.

Wolfart answered this question for all curves of genus g ≤ 4. We now determine all
superelliptic curves with many automorphisms with genus 5 ≤ g ≤ 10. The automorphism
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groups of superelliptic curves, the ramification structure of C → C/G, and the moduli
dimension of each family are determined in [92, Table 1] for every characteristic p > 5.

Corollary 21. A curve C with automorphism group G and signature σ has many auto-
morphisms if and only if g(C/G) = 0 and the moduli dimension of the Hurwitz space
H(g,G, σ) is 0.

See [75] on details the moduli dimension.

Lemma 48. Superelliptic curves of genus 5 ≤ g ≤ 10 which are not hyperelliptic and with
many automorphisms are presented in Table 7.

Proof. From [92, Table 1] we picked all cases such that δ = 0. These cases are exactly
superelliptic curves with many automorphisms. Since the hyperelliptic curves with many
automorphisms and CM were already studied in [79], we delete the cases for which n = 2.
The rest of the cases are presented below. �

Problem 11. Determine which curves from Table 7 have Jacobians with complex multipli-
cation.

Our goal is to determine which of the curves in the above table have CM. We have a
first simple criteria.

Lemma 49. Let C be an algebraic curve and ψ : C → E a degree n covering to an elliptic
curve. If the j-invariant j(E) is not an algebraic integer then Jac (C) does not have CM.

Moreover, a formula for Sym2χ similar to the one in [79] can be possibly obtained for
superelliptic curves by using the a basis for the space of holomorphic differentials on C is
given in Thm. 18. A complete discussion of this problem is intended in [87].

Nr. Ḡ G n m sig. δ Equation yn = f(x)

Genus 5

2
Cm

C22 2 11 11, 22 0 x11 + 1
2 C22 11 2 2, 22 0 x2 + 1

5 D2m 2 12 2, 4, 12 0 x12 − 1
8 2 10 2, 4, 20 0 x(x10 − 1)

20 S4 2 0 3, 42 0 x12 − 33x8 − 33x4 + 1

25 A5 2 2,3,10 0 x(x10 + 11x5 − 1)

Genus 6

2
Cm

C26 2 13 13, 26 0 x13 + 1
2 C21 3 7 7, 21 0 x7 + 1

2 C20 4 5 5, 20 0 x5 + 1

2 C20 5 4 4, 20 0 x4 + 1
2 C21 7 3 3, 21 0 x3 + 1

2 C26 13 2 2, 26 0 x2 + 1

5

D2m

G5 2 14 2, 4, 14 0 x14 − 1

5 D10 × C2 5 5 2, 5, 10 0 x5 − 1
8 G8 2 12 2, 4, 24 0 x(x12 − 1)

8 D12 × C3 3 6 2, 6, 18 0 x(x6 − 1)

8 G8 4 4 2, 8, 16 0 x(x4 − 1)
8 D6 × C5 5 3 2, 10, 15 0 x(x3 − 1)
8 D4 × C7 7 2 2, 142 0 x(x2 − 1)

18 S4 G18 4 0 2, 3, 16 0 x(x4 − 1)

19 G19 2 0 2, 6, 8 0 x(x4 − 1)(x8 + 14x4 + 1)
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TABLE 6. (Cont.)

Nr. Ḡ G n m sig. δ Equation yn = f(x)

Genus 7

2
Cm

C30 2 15 15, 30 0 x15 + 1

2 C24 3 8 8, 24 0 x8 + 1
2 C30 15 2 2, 30 0 x2 + 1

5
D2m

G5 2 16 2, 4, 16 0 x16 − 1
5 D18 × C3 3 9 2, 6, 9 0 x9 − 1

8 G8 2 14 2, 4, 28 0 x(x14 − 1)
8 D14 × C3 3 7 2, 6, 21 0 x(x7 − 1)

8 G8 8 2 2,162 0 x(x2 − 1)

Genus 8

2 Cm C34 2 17 17, 34 0 x17 + 1

2 C34 17 2 2, 34 0 x2 + 1

5
D2m

G5 2 18 2, 4, 18 0 x18 − 1

8 G8 2 16 2, 4, 32 0 x(x16 − 1)

22 S4 G22 2 0 3, 4, 8 0 x(x4 − 1)(x12 − 33x8 − 33x4 + 1)

Genus 9

2

Cm

C38 2 19 19, 38 0 x19 + 1

2 C30 3 10 10, 30 0 x10 + 1

2 C28 4 7 7, 28 0 x7 + 1
2 C28 7 4 4, 28 0 x4 + 1

2 C30 10 3 3, 30 0 x3 + 1

2 C38 19 2 2, 38 0 x2 + 1

5

D2m

G5 2 20 2, 4, 20 0 x20 − 1
5 G5 4 8 2,82 0 x8 − 1

8 G8 2 18 2, 4, 36 0 x(x18 − 1)

8 D18 × C3 3 9 2, 6, 27 0 x(x9 − 1)
8 G8 4 6 2, 8, 24 0 x(x6 − 1)

8 D6 × C7 7 3 2, 14, 21 0 x(x3 − 1)

8 G8 10 2 2, 202 0 x(x2 − 1)

17 S4 G17 4 0 2, 4, 12 0 x8 + 14x4 + 1
21 G21 2 0 42 6 0 (x8 + 14x4 + 1)(x12 − 33x8 − 33x4 + 1)

27 A5 2 2, 5, 6 0 x20 − 228x15 + 494x10 + 228x5 + 1

Genus 10

2

Cm

C42 2 21 21, 42 0 x21 + 1
2 C33 3 11 11, 33 0 x11 + 1

2 C30 5 6 6, 30 0 x6 + 1

2 C30 6 5 5, 30 0 x5 + 1
2 C33 11 3 3, 33 0 x3 + 1

2 C42 21 2 2, 42 0 x2 + 1

5 G5 2 22 2, 4, 22 0 x22 − 1

5 D24 × C3 3 12 2, 6, 12 0 x12 − 1
5 G5 6 6 2, 6, 12 0 x6 − 1

8 G8 2 20 2, 4, 40 0 x(x20 − 1)

8 D20 × C3 3 10 2, 6, 30 0 x(x10 − 1)
8 D10 × C5 5 5 2, 10, 25 0 x(x5 − 1)

8 G8 6 4 2, 12, 24 0 x(x4 − 1)

8 D4 × C11 11 2 2, 222 0 x(x2 − 1)

18 S4 G18 6 0 2, 3, 24 0 x(x4 − 1)
20 S4 × C3 3 0 3, 4, 6 0 x12 − 33x8 − 33x4 + 1

25 A5 A5 × C3 3 0 2, 3, 15 0 x(x10 + 11x5 − 1)

TABLE 7. Superelliptic curves for genus 5 ≤ g ≤ 10
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15. A WORD ON ABELIAN COVERS AND FURTHER DIRECTIONS

The story obviously doesn’t end with superelliptic Jacobians. What is the natural way
of extending the study of algebraic curves and their Jacobians? There have been many
attempts to study coverings where the monodromy group is more general that a cyclic
group. The next natural groups would be dihedral groups; see [33]. Another class of
coverings (curves) would be the coverings when the monodromy groups is an Abelian
group. Below we briefly suggest two classes of curves which seem the natural extension
of problems presented in this paper.

15.1. Curves with separated variables. There is a special class of algebraic curves satis-
fying an equation of the form f(x)−g(z) = 0, where f, g are polynomials with coefficients
in k. They were first introduced by by Fried and Macrae in the wonderful paper [37]. They
showed that

(a) f1(x) − g1(z) divides f(x) − g(z) if and only if there exists a polynomial F such
that f(t) = F (f1(t)), g(t) = F (g1(t)).

(b) f(x)− g(z) is said to be a minimal separation for a(x, z) if a(x, z) divides f(x)−
g(z) and if whenever a(x, z) divides F (x)−G(z) then f(x)− g(z) divides F (x)−G(z).

The polynomial a(x, z) possesses a minimal separation if and only if there is a polyno-
mial F (x)−G(z) in k[x, z] such that a(x, z) divides F (x)−G(x). Most of these results
depend on a lemma giving a necessary and sufficient condition for an element z ∈ k(x)
to lie in k[x]. The automorphism group of such curves is a degree m central extension
of Galk(f(x)), where n := |Galk(g(y))|. As far as we are aware, nobody has studied
in detail automorphism groups of such curves. Clearly all superelliptic curves are special
classes of such curves.

Problem 12. For a given genus g ≥ 2 list all groups which occur as automorphism groups
of curves with separable variables. For each group determine parametric equations of the
corresponding family of curves.

For more interesting ramifications to this class of curves check [34], [35] and [36].

15.2. Abelian covers. Consider a curve C such that it has a covering π : C → P1 which
has monodromy group an Abelian group. Then this monodromy group is a direct product
of cyclic groups. In this case the theory of cyclic covers can be used to study such Abelian
covers. We simplify the setup by considering only Galois coverings. Hence, the following
setup.

Let C be an algebraic curve defined over k such that G ↪→ Aut(C) is an Abelian group.
Let G ∼= G1 × · · · ×Gr be the decomposition of G into cyclic groups. If one of C/Hi is a
genus zero quotient space, then the equation of C is a superelliptic curve. Suppose non of
the Hi fix a zero genus quotient. Then we check all quotient groups Gi := G/Hi. Since G
is Abelian, these quotient groups act on the curves as well. If one of these groups Gi fixes
a genus zero quotient then again we are in the superelliptic case.

Is G has no subgroup which fixes a genus 0 field, then we consider all quotients Ci :=
C/Hi. They have smaller genii, therefore more manageable automorphism groups (which
are also Abelian. going down the lattice of the corresponding function fields we should
be able to determine the equation of each quotient curves and therefore the equation of
C. Thus, for a given g ≥ 2, we have a way of determining equation of all curves C such
that Aut(C) is an Abelian group. To the best of our knowledge, this has not been pursued
systematically for g ≥ 4.
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