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Abstract. Let X be a closed Riemann surface, τ a conformal automorphism

of order n ≥ 2, and N be the normalizer of ⟨τ⟩ in G = Aut(X ). If τ is central in
N , then X is called a generalized superelliptic curve of level n. In this paoer,

we determine parametric equations of all curves X and their corresponding

genus.

1. Introduction

Superelliptic curves are generalization of hyperelliptic curves, when instead of
the hyperelliptic involution the automorphism group of the curve posses a cyclic
normal subgroup of order n. They are smooth algebraic curves with affine equation
yn = f(x), where f(x) has nonzero discriminant. In many ways such curves are
natural generalization of the hyperelliptic case and provide the most natural way of
extending the theory of hyperelliptic curve to the general case; see [7] for a detailed
account of this approach.

In [4] we introduced generalized superelliptic curves, which are curves where f(x)
can have multiple roots. More precisely, a conformal automorphism τ , of order n ≥
2, of a closed Riemann surface X , of genus g ≥ 2, which is central in G = Aut(X )
and such that X/⟨τ⟩ has genus zero, is called a superelliptic automorphism of level
n. If n = 2, then τ is called hyperelliptic involution and it is known to be unique.

In [4], for the case n ≥ 3, we proved that for any two superelliptic automorphisms
τ1 and τ2 of level n of X if n is odd, then ⟨τ1⟩ = ⟨τ2⟩. In the case that n is even,
then the same uniqueness result holds, up to some explicit exceptional cases.

Let N be the normalizer of ⟨τ⟩ in G. For n ≥ 3, τ does not need to be central
in N and, if it is central in N , it might be that N ̸= G.

We follow the terminology in [3, 8] and [4]. If τ is central in G, then we called
it is a superelliptic automorphism of level n, we also say that H = ⟨τ⟩ is a
superelliptic group of level n and that X is a superelliptic curve of level n.

If τ is central in N , then we called it is a generalized superelliptic auto-
morphism of level n; we also say that H = ⟨τ⟩ is a generalized superelliptic
group of level n, and that X is a generalized superelliptic curve of level n.

The goal of this paper is to determine parametric equations of all generalized
superelliptic curves of level n. Our main result is Theorem 2 where we determine
the parametric equation and the corresponding genus of the curve in each case.
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2. Preliminaries

Let X be a closed Riemann surface of genus g ≥ 2 and let G = Aut (X ) be its
group of conformal automorphisms. If τ ∈ G has order n ≥ 2 and X/⟨τ⟩ has genus
zero, then it is called n-gonal. In this case, we also say that ⟨τ⟩ ∼= Cn is a n-gonal
group and that X is a cyclic n-gonal Riemann surface. A 2-gonal automorphism,
also called a hyperelliptic involution, is known to be unique in G; in particular, it
is central in G.

If n ≥ 3 is a prime integer and s ≥ 3 is the number of fixed points of τ , then ⟨τ⟩
is known to be the unique n-Sylow subgroup of X if either 2n < s or n ≥ 5s− 7.

For a general n ≥ 3, under the assumption that the fixed points of each non-
trivial power of τ is also fixed by τ , the uniqueness of ⟨τ⟩ is also true under the
assumption that g > (n− 1)2 [6]; see [1] and [4]. In this last case, the computation
of G has been done in [9].

Let N be the normalizer of ⟨τ⟩ in G. If n = 2 (the hyperelliptic case), then τ is
central in N = G. For n ≥ 3, τ does not need to be central in N and, if it is central
in N , it might be that N ̸= G. It follows from the results in [10], that generically
τ is central in G.

If τ is central in G (respectively, central in N), then we called it a superelliptic
automorphism of level n (respectively, generalized superelliptic automor-
phism of level n); we also say that H = ⟨τ⟩ is a superelliptic group of level
n (respectively, generalized superelliptic group of level n), and that X is a
superelliptic curve of level n (respectively, generalized superelliptic curve
of level n).

Let us consider a pair (X , τ), where τ is a n-gonal automorphism of X , and
H = ⟨τ⟩ ∼= Cn. An algebraic model for (X , τ) can be constructed as follows.

Let us consider a Galois branched covering π : X → Ĉ, whose deck covering

group is H = ⟨τ⟩, and let p1, . . . , ps ∈ Ĉ be its branch values. Then there are
integers

l1, . . . , ls ∈ {1, . . . , n− 1}

satisfying that l1 + · · · + ls is a multiple of n and gcd(n, l1, . . . , ls) = 1, such that
X can be described by an affine irreducible algebraic curve (which might have
singularities) of the following form (called a cyclic n-gonal curve)

(1) yn =
∏s

j=1(x− pj)
lj ,

If one of the branch values is ∞, say ps = ∞, then we need to delete the factor
(x− ps)

ls from the above equation. In this algebraic model, τ and π are given by

τ(x, y) = (x, ωny),

where ωn = e2πi/n, and π(x, y) = x.

Theorem 1. Let X be a cyclic n-gonal Riemann surface, described by the cyclic
n-gonal curve Eq. (1), and N be the normalizer of

H = ⟨τ(x, y) = (x, ωny)⟩

in Aut (X ). Let θ : N → N = N/H the canonical projection homomorphism. Then
τ is a generalized superelliptic automorphism of level n if and only if for all pj and
pi in the same θ(N)-orbits it holds that lj = li.
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2.1. The finite groups of Möbius transformations. Up to PSL2(C)-conjugation,
the finite subgroups of the group PSL2(C) of Möbius transformations are given by
(see, for instance, [2])

(2)

Cm :=
〈
a(x) = ωmx

〉
,

Dm :=
〈
a(x) = ωmx, b(x) = 1

x

〉
,

A4 :=
〈
a(x) = −x, b(x) = i−x

i+x

〉
,

S4 :=
〈
a(x) = ix, b(x) = i−x

i+x

〉
,

A5 :=
〈
a(x) = ω5x, b(x) =

(1−ω4
5)x+(ω4

5−ω5)

(ω5−ω3
5)x+(ω2

5−ω3
5)

〉
,

where ωm is a primitive m-th root of unity. For each of the above finite groups A,
a Galois branched covering

fA : Ĉ → Ĉ,
with deck group A, is given as follows

fCm
(x) = xm; branching: (m,m).

fDm
(x) = xm + x−m; branching: (2, 2,m).

fA4(x) =
(x4 − 2i

√
3x2 + 1)3

−12i
√
3x2(x4 − 1)2

; branching: (2, 3, 3).

fS4
(x) =

(x8 + 14x4 + 1)3

108x4(x4 − 1)4
; branching: (2, 3, 4).

fA5
(x) =

(−x20 + 228x15 − 494x10 − 228x5 − 1)3

1728x5(x10 + 11x5 − 1)5
; branching: (2, 3, 5),

see [5]. In the above, the branching corresponds to the tuple of branch orders of

the cone points of the orbifold Ĉ/A.

3. Equations for generalized superelliptic curves

Let X be a generalized superelliptic curve of level n and τ ∈ G = Aut (X ) be a
generalized superelliptic automorphism of level n (so, it is central in its normalizer
N). We proceed to describe explicit algebraic equations for X and also explicit
generators for N , by making a subtle modification of the classical method done by
Horiuchi in [5] for the hyperelliptic situation.

Let π : X → Ĉ be a Galois branched cover with deck group H = ⟨τ⟩ and let

Bπ = {p1, . . . , ps} ⊂ Ĉ

be its set of branch values. Let θ : N → N be the surjective homomorphism
satisfying θ(η) ◦ π = π ◦ η, for every η ∈ N . Recall that N is one of the finite
subgroups of PSL2(C) (as described in Section 2.1) keeping the set Bπ invariant.

Let us consider the Galois branched cover f = fN : Ĉ → Ĉ with N as its deck
group (as described in Section 2.1). Let P (x), Q(x) ∈ C[x] be relatively prime

polynomials such that f(x) = P (x)
Q(x) .

The collection Bπ is N -invariant and, by Theorem 1, if for t ∈ N it holds that
t(pi) = pj , then li = lj . In particular, we may consider the partition

Bπ = Bcrit
π ∪ B∗

π,

where Bcrit
π consists of those branch values with non-trivial N -stabilizer. For sim-

plicity, we assume ∞ /∈ B∗
π (but it might happen that ∞ ∈ Bcrit

π ).



4 RUBÉN A. HIDALGO, SAÚL QUISPE, AND TONY SHASKA

3.1. Horiuchi’s general process.

3.1.1. Computing algebraic models. There is at most T ≤ 3 disjoint N -orbits of the
points in Bcrit

π .

i) If N ∼= Cm, then T ≤ 2; each such orbit has cardinality one.
ii) If N ∼= Dm, then T ≤ 3; at most one orbit of cardinality 2 and at most two

others, each of cardinality m.
iii) If N ∼= A4, then T ≤ 3; at most one orbit of cardinality 6 and at most two

others, each of cardinality 4.
iv) If N ∼= S4, then T ≤ 3; at most one orbit of cardinality 8, one of cardinality

6 and another of cardinality 12.
v) IfN ∼= A5, then T ≤ 3; at most one orbit of cardinality 20, one of cardinality

30 and another of cardinality 12.

Let us denote these orbits (eliminating ∞ from its orbit if it is a branch value of
π) by

(3) Ocrit
u = {qu,1, . . . , qu,su}, u = 1, . . . , T,

where s = s1 + · · · + sT is the cardinality of Bcrit
π if ∞ /∈ Bcrit

π (otherwise, this
cardinality is s+ 1).

Similarly, let the disjoint N -orbits of the points in B∗
π be given by

(4) O∗
k = {pk,1, . . . , pk,|N |}, k = 1, . . . , L,

(so, L|N | is the cardinality of B∗
π).

As, for k = 1, . . . , L,

|N |∏
j=1

(x− pk,j) = P (x)− f(pk,1)Q(x),

our curve can be written as

(5) X : yn =

T∏
u=1

Ru(x)
l̂u

L∏
k=1

(P (x)− f(pk,1)Q(x))
l̃k ,

where

(1) Ru(x) =
∏su

j=1(x− qu,j)

(2) l̂u ∈ {0, 1, . . . , n− 1} and l̃k ∈ {1, . . . , n− 1}.
(3) gcd(n, l̂1, . . . l̂T , l̃1, . . . , l̃L) = 1 (where we eliminate a zero if appears).
(4) if ∞ /∈ Bcrit

π , then

T∑
u=1

su l̂u +

L∑
k=1

|N |l̃k ≡ 0 mod n.

(5) If ∞ ∈ Ocrit
v , then

(1 + sv)l̂v +

T∑
u=1,u ̸=v

su l̂u +

L∑
k=1

|N |l̃k ≡ 0 mod n.



EQUATIONS FOR GENERALIZED SUPERELLIPTIC RIEMANN SURFACES 5

3.1.2. Computing the elements of N . Let η ∈ N and b = θ(η). As τ commutes
with η, by [4, Lem. 1],

η(x, y) = (b(x), F (x)y),

where F (x) ∈ C(x). Below, we sketch how to compute such F (x).

Lemma 1. Let O = {a1, . . . , ar} a full N -orbit (in our case, this is one of the
Ocrit

u or O∗
k). If b ∈ N , then the following hold.

(1) If ∞ /∈ O, then

r∏
j=1

(b(x)− aj) = (b′(x))
r/2

 r∏
j=1

b′(aj)

1/2
r∏

j=1

(x− aj).

(2) If ar = ∞ and b(∞) = ∞, then

r−1∏
j=1

(b(x)− aj) = (b′(x))
(r−1)/2

r−1∏
j=1

b′(aj)

1/2
r−1∏
j=1

(x− aj).

(3) If ar = ∞, b(ar−1) = ∞ and b(∞) = as, where s ̸= r − 1, and b(at) = ar−1,
then

r−1∏
j=1

(b(x)− aj) =
(ar−1 − as)

1
2 (ar−1 − at)

1
2

x− ar−1
(b′(x))

r−1
2

r−2∏
j=1

b′(aj)

 1
2 r−1∏
j=1

(x− aj).

(4) If ar = ∞, b(ar−1) = ∞ and b(∞) = ar−1, then

r−1∏
j=1

(b(x)− aj) = − (b′(x))
r/2

r−2∏
j=1

b′(aj)

1/2
r−1∏
j=1

(x− aj).

Proof. The equalites are consequence of the fact that, for a, b(a) ∈ C,

b(x)− b(a) = b′(x)1/2b′(a)1/2(x− a).

□

If, in the above lemma, we replace O by Ocrit
u , then we obtain an equality

Ru(b(x)) =

su∏
j=1

(b(x)− qu,j) = Qu(x)

su∏
j=1

(x− qu,j) = Qu(x)Ru(x).

Similarly, if we replace O by O∗
k and set

Sk(x) := P (b(x))− f(pk,1)Q(b(x)) =

|N |∏
j=1

(x− pk,j),

then we obtain an equality

Sk(b(x)) =

|N |∏
j=1

(b(x)− pk,j) = Lk(x)

|N |∏
j=1

(x− pk,j) = Lk(x)Sk(x).
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It can be checked, by plugging directly into the equation for X , that

(6) F (x)n =

T∏
u=1

Qu(x)
l̂u

L∏
k=1

Lk(x)
l̃k .

3.2. Explicit computations. Below, for each of the possibilities for N , we pro-
ceed to explicitly describe the above procedure. In the following, if lu > 0, then we
set nu = gcd(n, lu).

Theorem 2. Let X be a generalized superelliptic curve of level n,

τ ∈ G = Aut (X )

be a generalized superelliptic automorphism of order n and N be the normalizer of
H = ⟨τ⟩ in G. Then, up to isomorphisms, X , τ and N are described as indicated
in the above cases.

N̄ Equation Genus
Cm Eq. (7) Eq. (8)
Dm Eq. (9) Eq. (10)
A4 Eq. (11) Eq. (12)
S4 Eq. (13) Eq. (14)
A5 Eq. (15) Eq. (16)

Table 1. The equations and the corresponding genii for each case

Proof. We will consider all cases one by one.

Case N ∼= Cm: In this case, N =
〈
a(x) = ωmx

〉
and the curve X has the form

(7) X : yn = xl0(xm − 1)l1
∏r

j=2(x
m − amj )lj ,

where

(i) a2, . . . , ar ∈ C− {0, 1}, ami ̸= amj and
(ii) gcd(n, l0, l1, . . . , lr) = 1.

If

α(x, y) = (ωmx, ωl0/n
m y),

then

N = ⟨τ, α : τn = 1, αm = τ l0 , τα = ατ⟩.

The signature of X/H is
(
0; n

n1
, m. . ., n

n1
, . . . , n

nr
, m. . ., n

nr

)
, if l0 = 0, m

∑r
j=1 lj ≡ 0 mod (n),(

0; n
n0

, n
n1

, m. . ., n
n1

, . . . , n
nr

, m. . ., n
nr

)
, if l0 ̸= 0, l0 +m

∑r
j=1 lj ≡ 0 mod (n),(

0; n
n0

, n
nr+1

, n
n1

, m. . ., n
n1

, . . . , n
nr

, m. . ., n
nr

)
, if l0 ̸= 0, l0 +m

∑r
j=1 lj ̸≡ 0 mod (n),
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where (in the last situation) lr+1 ∈ {1, . . . , n− 1} is the class of −(l0 +m
∑r

j=1 lj)

module n. The signature of X/N is
(
0;m,m, n

n1
, n
n2

, . . . , n
nr

)
, if l0 = 0, m

∑r
j=1 lj ≡ 0 mod (n),(

0;m, mn
n0

, n
n1

, n
n2

, . . . , n
nr

)
, if l0 ̸= 0, l0 +m

∑r
j=1 lj ≡ 0 mod (n),(

0; mn
n0

, mn
nr+1

, n
n1

, n
n2

, . . . , n
nr

)
, if l0 ̸= 0, l0 +m

∑r
j=1 lj ̸≡ 0 mod (n),

The genus of X is
(8)

1 + 1
2

(
(rm− 2)n−m

∑r
j=1 nj

)
, if l0 = 0, m

∑r
j=1 lj ≡ 0 mod (n),

1 + 1
2

(
(rm− 1)n−m

∑r
j=1 nj

)
, if l0 ̸= 0, l0 +m

∑r
j=1 lj ≡ 0 mod (n),

1 + 1
2

(
rmn−m

∑r
j=1 nj

)
, if l0 ̸= 0, l0 +m

∑r
j=1 lj ̸≡ 0 mod (n).

Case N ∼= Dm: In this case, Dm :=
〈
a(x) = ωmx, b(x) = 1

x

〉
and the curve X has

the form

(9) X : yn = xl0(xm − 1)lr+1(xm + 1)lr+2
∏r

j=1(x
2m − (amj + a−m

j )xm + 1)lj ,

where

(i) a±m
i ̸= a±m

j ̸= 0,±1,

(ii) 2l0 +m(lr+1 + lr+2) + 2m(l1 + · · ·+ lr) ≡ 0 mod (n)
(iii) gcd(n, l0, l1, . . . , lr+2) = 1.

If α and β are as follows

α(x, y) = (ωmx, ωl0/n
m y),

β(x, y) =

(
1

x
,

(−1)lr+1/n

x(2l0+m(lr+1+lr+2+2(l1+···+lr)))/n
y

)
,

then

N = ⟨τ, α, β : τn = 1, αm = τ l0 , β2 = τ lr+1 , τα = ατ, τβ = βτ⟩.

The signature of X/H is(
0;

n

n0
,
n

n0
,

n

nr+1
, m. . .,

n

nr+1
,

n

nr+2
, m. . .,

n

nr+2
,
n

n1
, 2m. . .,

n

n1
, . . . ,

n

nr
, 2m. . .,

n

nr

)
,

the signature of X/N is(
0;

mn

n0
,

2n

nr+1
,

2n

nr+2
,
n

n1
,
n

n2
, . . . ,

n

nr

)
,

and the genus of X is

(10) g = 1 + 1
2

(
2m(r + 1)n− 2n0 −m

(
nr+1 + nr+2 + 2

∑r
j=1 nj

))
.

Case N ∼= A4: In this case, A4 :=
〈
a(x) = −x, b(x) = i−x

i+x

〉
and X has the form

(11)

X : yn = R1(x)
lr+1R2(x)

lr+2R3(x)
lr+3

∏r
j=1

(
R1(x)

3 + 12ibj
√
3R3(x)

2
)lj

,
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where

R1(x) = x4 − 2i
√
3x2 + 1,

R2(x) = x4 + 2i
√
3x2 + 1,

R3(x) = x(x4 − 1),

f(x) =
R1(x)

3

−12i
√
3 R3(x)2

,

such that

(i) bj ̸= bi ∈ C \ {0, 1},
(ii) 4(lr+1 + lr+2) + 6lr+3 + 12(l1 + · · ·+ lr) ≡ 0 mod (n), and
(iii) gcd(n, l1, . . . , lr+3) = 1.

If

α(x, y) = (−x, (−1)lr+3/ny), β(x, y) = (b(x), F (x)y),

where

F (x) =
2(lr+1+lr+2)/n(1− I

√
3)lr+1/n(1 + I

√
3)lr+2/n(8i)lr+3/n(−64)(l1+···+lr)/n

(x+ i)(4(lr+1+lr+2)+6lr+3+12(l1+···+lr))/n
,

then

N =⟨τ, α, β : τn = 1, α2 = τ lr+3 , β3 = τ lr+1+lr+2+lr+3+l1+···+lr ,

(αβ)3 = τ lr+1+lr+2+3lr+3+l1+···+lr , τα = ατ, τβ = βτ⟩.

The signature of X/H is(
0;

n

nr+1
, 4. . .,

n

nr+1
,

n

nr+2
, 4. . .,

n

nr+2
,

n

nr+3
, 6. . .,

n

nr+3
,
n

n1
, 12. . .,

n

n1
, . . . ,

n

nr
, 12. . .,

n

nr

)
,

the signature of X/N is(
0;

3n

nr+1
,

3n

nr+2
,

2n

nr+3
,
n

n1
,
n

n2
, . . . ,

n

nr

)
,

and the genus of X is

(12) g = 1− n+ 2nr+1 + 2nr+2 + 3nr+2 − 6

r∑
j=1

nj .

Case N ∼= S4: In this case, S4 :=
〈
a(x) = ix, b(x) = i−x

i+x

〉
and X has the form

(13) X : yn = R1(x)
lr+1R2(x)

lr+2R3(x)
lr+3

r∏
j=1

(R1(x)
3 − 108bjR3(x)

4)lj ,

where
R1(x) = x8 + 14x4 + 1,
R2(x) = x12 − 33x8 − 33x4 + 1,
R3(x) = x(x4 − 1),

f(x) = R1(x)
3

108R3(x)4
,

such that

(i) bj ̸= bi ∈ C \ {0, 1},
(ii) 8lr+1 + 12lr+2 + 6lr+3 + 24(l1 + · · ·+ lr) ≡ 0 mod (n) and
(iii) gcd(n, l1, . . . , lr+3) = 1.
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If

α(x, y) = (ix, ilr+3/ny), β(x, y) = (b(x), F (x)y),

F (x) =
16lr+1/n · (−64)lr+2/n · (8i)lr+3/n · 4096(l1+···+lr))/n

(x+ i)(8lr+1+12lr+2+6lr+3+24(l1+···+lr))/n
,

then

N =⟨τ, α, β : τn = 1, α4 = τ lr+3 , β3 = τ lr+1+lr+2+lr+3+l1+···+lr ,

(αβ)2 = τ , τα = ατ, τβ = βτ⟩.

The signature of X/H is(
0;

n

nr+1
, 8. . .,

n

nr+1
,

n

nr+2
, 12. . .,

n

nr+2
,

n

nr+3
, 6. . .,

n

nr+3
,
n

n1
, 24. . .,

n

n1
, . . . ,

n

nr
, 24. . .,

n

nr

)
,

the signature of X/N is(
0;

3n

nr+1
,

2n

nr+2
,

4n

nr+3
,
n

n1
,
n

n2
, . . . ,

n

nr

)
,

and the genus of X is

(14) g = 1 + 12(1 + r)n− 4nr+1 − 6nr+2 − 3nr+3 − 12
∑r

j=1 nj .

Case N ∼= A5: In this case,

A5 :=
〈
a(x) = ω5x, b(x) =

(1− ω4
5)x+ (ω4

5 − ω5)

(ω5 − ω3
5)x+ (ω2

5 − ω3
5)

〉
and X has the form

(15) X : yn = R1(x)
lr+1R2(x)

lr+2R3(x)
lr+3

∏r
j=1(R1(x)

3 − 1728bjR3(x)
5)lj ,

where

R1(x) = −x20 + 228x15 − 494x10 − 228x5 − 1,
R2(x) = x30 + 522x25 − 10005x20 − 10005x10 − 522x5 + 1,
R3(x) = x(x10 + 11x5 − 1),

f(x) = R1(x)
3

1728R3(x)5
,

such that
(i) bj ̸= bi ∈ C \ {0, 1},
(ii) 20lr+1 + 30lr+2 + 12lr+3 + 60(l1 + · · ·+ lr) ≡ 0 mod (n),
(iii) gcd(n, l1, . . . , lr+3) = 1.

N = ⟨τ, α, β : α5 = τ lr+3 , β3 = τ l, (αβ)3 = τ t⟩,

such that α(x, y) = (a(x), ω
lr+3/n
5 y) and β(x, y) = (b(x), F (x)y), where F (x) is a

rational map satisfying

F (b2(x)) · F (b(x)) · F (x) = ωl
n,

for a suitable l ∈ {0, . . . , n− 1}, and

F (x)n = T
lr+1+3(l1+···+lr)
1 (x)T

lr+2

2 (x)T
lr+3

3 (x),

where Tj(x) =
Rj(b(x))
Rj(x)

, for j = 1, 2, 3.

The signature of X/H is(
0; n

nr+1
, 20. . ., n

nr+1
, n
nr+2

, 30. . ., n
nr+2

, n
nr+3

, 12. . ., n
nr+3

, n
n1

, 60. . ., n
n1

, . . . , n
nr

, 60. . ., n
nr

)
,
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and the signature of X/N is(
0; 3n

nr+1
, 2n
nr+2

, 5n
nr+3

, n
n1

, n
n2

, . . . , n
nr

)
,

and the genus of X is

(16) g = 1 + 30(r + 1)n− 10nr+1 − 15nr+2 − 6nr+3 − 30
∑r

j=1 nj .

□

4. Computing cyclic n-gonal curves

Consider the collection Fg of all the tuples (n, s;n1, . . . , ns) satisfying the fol-
lowing Harvey’s conditions:

(1) n ≥ 2, s ≥ 3, 2 ≤ n1 ≤ n2 ≤ · · · ≤ ns ≤ n;
(2) nj is a divisor of n, for each j = 1, . . . , s;
(3) lcm (n1, . . . , nj−1, nj+1, . . . , ns) = n, for every j = 1, . . . , s;
(4) if n is even, then #{j ∈ {1, . . . , s} : n/nj is odd} is even;

(5) 2(g − 1) = n
(
s− 2−

∑s
j=1 n

−1
j

)
.

For each tuple (n, s;n1, . . . , ns) ∈ Fg we consider the collection Fg(n, s;n1, . . . , ns)
of tuples (l1, . . . , ls) so that

(1) l1, . . . , ls ∈ {1, . . . , n− 1};
(2) l1 + · · ·+ ls ≡ 0 mod (n);
(3) gcd(n, lj) = n/nj , for each j = 1, . . . , s.
Now, for each such tuple (l1, . . . , ls) ∈ Fg(n, s;n1, . . . , ns) we may consider the

epimorphism

(17) θ : ∆ = ⟨c1, . . . , cs : cn1
1 = · · · = cns

s = c1 · · · cs = 1⟩ → Cn = ⟨τ⟩ : cj 7→ τ lj .

Our assumptions ensure that the kernel Γ = ker(θ) is a torsion free normal co-
compact Fuchsian subgroup of ∆ with X = H/Γ a closed Riemann surface of genus
g admitting a cyclic group H ∼= Cn as a group of conformal automorphisms with
quotient orbifold X/H = H/∆; a genus zero orbifold with exactly s cone points of
respective orders n1, . . . , ns. The surface X corresponds to a cyclic n-gonal curve

(18) C(n, s; l1, . . . , ls; p1, . . . , ps) : yn =
∏s

j=1(x− pj)
lj ,

for pairwise different values p1, . . . , ps ∈ C, and H generated by τ(x, y) = (x, ωny).
Different tuples

(l1, . . . , ls), (l
′
1, . . . , l

′
s) ∈ Fg(n, s;n1, . . . , ns)

might provide isomorphic pairs (X , H) and (X ′, H ′) (i.e., there is an isomorphism
between the Riemann surfaces conjugating the cyclic groups). In general this is a
difficult problem to determine if different tuples define isomorphic pairs. But, in the
non-exceptional fully generalized superelliptic situation (see ??) the uniqueness of
the superelliptic cyclic group of level n permits us to see that (X , H) and (X ′, H ′)
are isomorphic pairs if and only if the corresponding curves

C(n, s; l1, . . . , ls; p1, . . . , ps) and C(n, s; l′1, . . . , l
′
s; p

′
1, . . . , p

′
s)

are isomorphic, this last being equivalent to the existence of Möbius transformation
t ∈ PSL2(C), a permutation η ∈ Ss and an element

u ∈ {1, . . . , n− 1}, with gcd(u, n) = 1,
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such that
(a) l′j ≡ ulη(j) mod (n), for j = 1, . . . , s,
(b) p′η(j) = t(pj), for j = 1, . . . , s.

The above (together with Theorem 1) may be used to construct all the possible
(generalized) superelliptic curves of lower genus in a similar fashion as done in [8]
for the superelliptic case.
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