
ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR

SPACES

T. SHASKA

Department of Mathematics and Statistics,
College of Liberal Arts and Sciences

Oakland University, Rochester, MI, 48326

Abstract. We develop new artificial neural network models for graded vector

spaces, which are suitable when different features in the data have different
significance (weights). This is the first time that such models are designed

mathematically and they are expected to perform better than neural networks

over usual vector spaces, which are the special case when the gradings are all
1s.

Contents

1. Introduction 2
2. Mathematical foundations of artificial neural networks 4
2.1. Artificial Neural Networks 4
2.2. Symmetries 4
2.3. Groups acting on sets 5
2.4. Invariant and equivariant maps 6
2.5. Quotient spaces 7
2.6. Group representations 7
2.7. Quotient representation: 8
2.8. Tensor products 9
2.9. Topological groups 9
2.10. Clebsch-Gordan decomposition 10
3. Equivariant Neural Networks 10
3.1. Equivariant neural networks 11
3.2. Convolution Neural Networks: translation equivariance 11
3.3. Integral transforms 12
3.4. Translation equivariant bias summation 13
3.5. Translation equivariant local nonlinearities 13
3.6. Translation equivariant local pooling operations 14
3.7. Affine group equivariance and steerable Euclidean CNNs 14
4. Graded vector spaces 16

E-mail address: shaska@oakland.edu.

2020 Mathematics Subject Classification. xx, yy.
Key words and phrases. artificial neural networks, equivariant networks, weighted varieties,

weighted heights.

1

2 ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES

4.1. Integer gradation 16
4.2. General gradation 16
4.3. Graded linear maps 17
4.4. Operations over graded vector spaces 18
4.5. Inner graded vector spaces 18
5. Artificial neural networks over graded vector spaces 19
5.1. Artificial neural networks on weighted projective spaces 20
References 21

1. Introduction

Artificial neural networks are widely used in artificial intelligence for a variety of
problems, including problems that rise from pure mathematics. A neural network
model is a function f : kn → km, for some feld k and in the majority of cases
k = R. Many different architectures and models are used for such networks. The
coordinates of v ∈ kn are called input features and the coordinates of the vector
u = f(v) the output features.

There are many scenarios when the input features are characterized by different
values from some set, say I. For example, if the entries of the data are document
and each one has a different significance and could be associated with different
values. Consider for example if v = [x0, . . . , xn] we can assign to any xi some value
wt(xi) ∈ I. Such values are called weights . A vector space in which coordinates
of each vector are assigned some other value are known in mathematics as graded
vector spaces (cf. Section 4). In this paper we investigate whether one can design
neural networks over such graded vector spaces. One can think of many scenarios
where neural networks defined over graded vector spaces can make a lot os sense
from the applications point of view.

Our motivation came from studying the weighted projective space WP(2,4,6,10),Q
which is the moduli space of genus two curves; see [10], in which case the weights
are positive integers. The space of homogenous polynomials graded by their degree
is a classical example of such graded vector spaces, when again the grading is done
over the set of positive integers.

If one intends to carry the theory of neural networks to such graded vector spaces
there are some mathematical obstacles that need to be cleared. Are there linear
maps between such spaces? How will the activation functions look like? Will such
graded or weighted neural networks have any advantages over the classical neural
networks?

This paper is organized as follows. In Section 2 we give the mathematical back-
ground of artificial neural networks. We briefly define group action on sets, invariant
and equivariant maps, quotient spaces, group and quotient representations, tensor
products, topological groups, and state the Clebsch-Gordan decomposition. While
some of these definitions are basic knowledge for mathematicians, they become
necessary since this paper is intended to a larger audience of the AI community.
Section 2 is a prelude to defining equivariant neural networks what we intend to
develop for the analog of such networks over graded vector spaces.

In Section 3 we give the basic definitions of equivariant neural networks. We
define convolutional neural networks or translation equivariant networks, integral

ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES 3

transforms, square integrable functions, regular translation intertwiners, and de-
scribe some of the properties of the translation equivariant local pooling operations.
Part of Section 3 are also affine group equivariance and steerable Euclidean con-
volutional neural networks. For more details on such new and exciting topics the
reader can check the wonderful book [12].

In many ways we want to reproduce the results of Section 3 for neural networks
over graded vector spaces, but the upshot is to go even further and define such neu-
ral networks that are equivariant under coordinate changes (i.e. work for weighted
projective spaces) and to do this over any field k so we can study not just appli-
cations from everyday life, but to use such neural networks to study arithmetic
applications (i.e. when k is a number field), cryptography and cybersecurity (when
k is a finite field), etc. Of course, this is probably unrealistic currently since such
methods are not fully understood even on classical neural networks.

In Section 4 we go over the mathematical foundations of graded vector spaces.
We define gradations, graded linear maps, operations on graded vector spaces, inner
graded vector spaces, and discuss how to define a norm on such spaces. Defining a
norm is very important since it will be based on this norm that one would define a
cost function for the neural network. An adjusted homogenous norm seems as the
best option to capture the significance of the weights, similar to the discussion on
linear bundles and weighted heights in [8]. This is open to further investigation.

In Section 5 we define graded neural networks, graded activation functions. In
general a graded neural network is defined, as expected, as a neural network which
handles data where every input feature has a certain weight. It seems as under
mild conditions, we can replicate all the machinery of the artificial neural networks
to work for such artificial graded neural networks. It is worth pointing out that
when the weights are all ones the graded neural network is just the usual neural
network. It is interesting both mathematically and from the application point of
view to understand the performance of such neural networks and whether they
perform better for certain applications.

From the mathematical point of view many questions arise, but the main one
is the understanding of the geometry of weighted projective spaces. In view of
[8–10] understanding the geometry of such spaces possibly could shed light to many
intriguing arithmetic questions on weighted projective varieties.

4 ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES

2. Mathematical foundations of artificial neural networks

In this section we establish the notation and give basic definitions of equivariant
neural networks. We assume the reader has basic knowledge on the subject on the
level of [12], [7] Throughout this paper k denotes a field, An(k) := kn the affine
space, and Pn(k) the projective space over k.

2.1. Artificial Neural Networks. Let the input vector be x = (x0, . . . , xm) and
the output say some y = (y0, . . . , yn). We denote by X the space of in-features and
Y the space of out-features. A neuron is a function f : kn → k such that

f(x) =

n∑
i−0

wixi + b,

where b ∈ k is a constant called bias. We can generalize neurons to tuples of
neurons via

L : kn → kn

x → (f0(x), . . . , fn(x))

Then L is a function given by

L(x) = W · x+ b,

where W is an n × n matrix (of weights) with integer entries and b ∈ kn. A
non-linear function g : kn → kn is called an activation function.

A network layer is a function

kn → kn

x → g (W · x+ b)

for some g some activation function. A neural network is the composition of
many layers. The i-th layer

· · · −→ kn
Li−→ kn −→ · · ·

x −→ Li(x) = gi (Wix+ bi) ,

where gi, Wi, and bi are the activation, matrix, and bias of the corresponding to
this layer.

After m layers the output (predicted values) will be denoted by ŷ = [ŷ1, . . . , ŷn]
t,

where

ŷ = Lm (Lm−1 (. . . (L1(x)) . . .)) ,

while the true values by y = [y1, . . . , yn]
t. The composition of all layers is called

the model function, say

M : X → Y

2.2. Symmetries. Assume that the input has symmetries. The simplest one could
be permuting coordinates, but other not so obvious symmetries could be present
as well.

Example 1 (Symmetric polynomials). Consider the following: x = (α1, . . . , αn)
and y = (y0, . . . , yn−1) where coordinates of y are coefficients of the polynomial

F (x) :=

n∏
i=1

(x− αi)

ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES 5

Obviously permuting roots α1, . . . , αn does not affect the outcome here, which is
the set of elementary symmetric polynomials y = (s0, . . . , sn1) well known in
algebra. In this case,

s1 =

n∑
i=1

αi = α1 + α2 + · · ·+ αn,

s2 =

n∑
i̸=j

αiαj ,

...

sn =

n∏
i=1

αi = α1 · · ·αn

We can generalize this concept by group actions, which is a well understood
concept from abstract algebra. The symmetric group Sn acts on {α1, . . . , an} by
permuting the roots. Notice that symmetric polynomials s0, . . . , sn are un-
changed (invariant) under this action.

Can we use this idea for neural networks? In other words, if a model network is
given by M : X → Y and a group G acts on X when can we use this action to get
a more efficient model? What about if we have a group G acting not only on the
space of in-features X , but also on the space of out-features Y? We will explore
what conditions have to be met by these actions and the model so that we can
make use of it. This lead to two interesting types of neural networks: invariant
networks and equivariant networks.

2.3. Groups acting on sets. Let X be a set and G a group. We say that the
group G acts on X if there is a function

▶: G×X → X such that (g, x) → g ▶ x

which satisfies the following properties:

i) e ▶ x = x for every x ∈ X
ii) g ▶ (h ▶ x) = (gh) ▶ x, for every g, h ∈ G.

The set X is called a G-set. When there is no confusion g ▶ x is simply denoted
by gx. Let G acts on X and x, y ∈ X . We say that x and y are G-equivalent
if there exists g ∈ G such that gx = y. If two elements are G-equivalent, we write
x ∼G y or x ∼ y.

Proposition 1. Let X be a G -set. Then, G-equivalent is an equivalence relation
in X .

The kernel of the action is the set of elements

ker(f) = {g ∈ G | gx = x, for all x ∈ X}
For x ∈ X , the stabilizer of x ∈ G is defined as

StabG(x) = {g ∈ G | gx = x}
sometimes denoted by Gx. The stabilizer StabG(x) is a subgroup of G.

Lemma 1. Let X be a G -set and assume that x ∼ y. Then, the stabilizer StabG(x)
is isomorphic to the stabilizer StabG(y).

6 ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES

The action of G on X is called faithful if its kernel is the identity. The orbit
of x ∈ X (or G-orbit) is the set

Orb(x) = {gx ∈ X | g ∈ G}

An action is called transitive if for every x, x ∈ X, there is g ∈ G such that x = gy.

Lemma 2. Let G act on a set X and x ∈ X . Then, the cardinality of the orbit
Orb(x) is the index of the stabilizer |Orb(x)| = [G : StabG(x)].

A G-set is transitive if it has only one G-orbit. This is equivalent with the above
definition of the transitive. Let X be a finite G-set and XG the set of fixed points
in X (sometimes set of invariants)

XG = {x ∈ X : gx = x for every g ∈ G}.

Since the orbits partition X we have

|X | = |XG |+
n∑

i=k

|Orb(xi)| ,

where xk, . . . , xn are representative of distinct orbits of X .
For any g ∈ G the set of fixed points of g in X , which we denote with X g, is

the set of all points x ∈ X such that gx = x. Thus,

X g = {x ∈ X | gx = x}

Theorem 1 (Orbit counting theorem). Let G be a finite group acting on X . If N
is number of orbits, then

N =
1

|G|
∑
g∈G

|Xg | .

Hence, the number of orbits is equal to the average number of points fixed by
an element of G.

Corollary 1. Let G be a finite group and X a finite set such that |X | > 1. If G
acts on X transitively then there exists τ ∈ G with no fixed points.

Proof. Let |G| = n. Since the action is transitive then there is only one G-orbit.
Form the above theorem we have that

|G| = F (1G) + F (g1) + · · ·F (gn) = |X |+ · · ·

If F (τ) ≥ 1 for all τ ∈ G then

|G| = |X |+
∑
σ∈G

F (τ) ≥ |X |+ (n− 1)

Thus, |G| > n which is a contradiction. Hence, there must be some τ ∈ G such
that F (τ) = 0. □

2.4. Invariant and equivariant maps. From now onG acts on X via▶: G×X →
X . A function T : X → Y is called G-invariant if and only if,

T (g ▶ x) = T (x), ∀g ∈ G,∀x ∈ X

ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES 7

In other words,

X T //

▶
��

Y

X
T

?? x //

▶

��

T (x) = T (g ▶ x)

g ▶ x

T

77

Assume now that G also acts on Y, say G acts on Y as

⋆ : G× Y → Y, (g, y) → g⋆y

Then, T : X → Y is called G-equivariant if

T (g ▶ x) = g⋆ T (x) ∀g ∈ G,∀x ∈ X

X T //

▶
��

Y

⋆
��

X
T
// Y

x
T //

▶

��

T (x)

⋆

��
g ▶ x

T
// T (g ▶ x)

2.5. Quotient spaces. The set of orbits (left) of G acting on X is denoted by

G\X := {Orb(x) | x ∈ X}
and is called a quotient space. The corresponding quotient map is called the
map

π : X → G\X , x → Orb(x)

Notice that in the case of right action, the symbol X /G is used for the quotient
space.

2.6. Group representations. Let V be a vector space (finite dimension) over a
field k. GL(V) the general linear group of V (i.e., group of invertible linear maps
L : V → V). Let G a locally compact group (i.e., finite groups, compact groups,
Lie groups are all locally compact) A linear representation of G on V is a tuple
(ρ, V) such that

ρ : G → GL(V)

is a group homomorphism. V is called the representation space. Sometimes
(ρG, V) is used. If V = kn then ∀g ∈ G, we have ρ(g) ∈ GLn(k), so ρ(g) is an n×n
invertible matrix when a basis in V is chosen.

Any G-representation (ρ, V) defines an action

▷ : G× V → V, (g, v) → ρ(g)v

Conversely, from any linear G action ▷ : G× V → V we get a representation

ρ▷ : G → GL(V), g → Lg

where Lg(v) = g ▷ (v), for all v ∈ V . Hence, there is a one to one correspondence
between G-representations on V and (linear) G-group actions on V . Here are some
common representations (we will skip details)

(i) trivial representation (ρ(g) = idV)
(ii) standart representation (ρ(g) = g)
(iii) tensor representation
(iv) regular representation

8 ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES

Let (ρ1, V1) and (ρ2, V2) be two given G-representations. Let V1 ⊕ V2 be the
direct sum and

α : GL(V1)×GL(V2) → GL(V1 ⊕ V2)

(v1, v2) → v1 ⊕ v2

Then we can define the direct sum representation as given by ρ1 ⊕ ρ2 = α ◦
(ρ1 × ρ2) as

G
ρ1×ρ2−→ GL(V1)×GL(V2)

α−→ GL(V1 ⊕ V2)

g → (ρ1(g), ρ2(g)) → ρ1(g)⊕ ρ2(g)

The matrix representation of it (when bases for V1 and V2 are chosen) is

(ρ1 ⊕ ρ2)(g) =

(
ρ1(g) 0
0 ρ2(g)

)
2.7. Quotient representation: Let W ⊂ V be a subspace and V/W the quotient
space. G acts on V/W via

G×W → W, (g, v +W) → ρ(g)v +W

With this action V/W is called the quotient representation of V under W
Let (ρ, V) be a G-representation and consider a subspace W ⊂ V . W is called

invariant if it is closed under the action of ρ, i.e., ρ(g)w ∈ W , for any w ∈ W and
g ∈ G. Hence the restriction of ρ in W is a homomorphism:

ρW : G −→ GL(W)

Definition. 2. A representation (ρ, V) is called irreducible representation
(irrep) it it has only the two trivial subrepresentations W = V and W = {0}.

Example 2. Of course the fact that (ρ, V) is irreducible or not depends on the field
k. For example, let G = SO(2,R). Its real valued irreducible representation are

ρG,R
m (ϕ) =

(
cos(mϕ) − sin(mϕ)
sin(mϕ) cos(mϕ)

)
, m ∈ N

However, over C

Let (ρ1, V1) nd (ρ2, V2) be G-representations. An intertwiner between them is
an equivariant linear map

L : V1 −→ V2, which satisfies L ◦ ρ1(g) = ρ2(g) ◦ L

The space of intertwines is a vector space denoted by HomG(V1, V2).

Example 3. Convolutions are intertwiners

Definition. 3 (Equivalent (isomorphic) representations). Two representations
(ρ1, V1) and (ρ2, V2) are called equivalent or isomorphic if there exists an iso-
morphism

L : V1 −→ V2, such that L ◦ ρ1(g) = ρ2(g) ◦ L, for all g ∈ G

This is equivalent as matrix representations ρ1(g) and ρ2(g) are similar for every
g ∈ G.

ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES 9

Definition. 4 (Endomorphisms). Intertwines from (ρ, V) to itself are called en-
domorphisms. In other words, an endomorphism is a linear map L : V → V such
that

L ◦ ρ(g) = ρ(g) ◦ L,

for all g ∈ G. The endomorphism space is denoted by EndG(V) = HomG(V, V)

Lemma 3 (Schur’s lemma). Let (ρ1, V1) and (ρ2, V2) be G-irreps over k = R or
k = C. Then:

(1) If (ρ1, V1) and (ρ2, V2) are not isomorphic, then there is no (non-trivial)
intertwiner between them

(2) If (ρ1, V1) = (ρ2, V2) =: (ρ, V) are identical, any intertwiner is an isomor-
phism and
(a) If k = C then

ρ = λ idv, for λ ∈ C

(b) If k = R, then EndG(V) has dimension 1, 2, or 4 depending on whether
(ρ, V) is real, complex, or quaternionic type.

2.8. Tensor products. The tensor product V ⊗kW of two vector spaces V and
W over a field k is the k-vector space based on elements v ⊗ w, and with relations
for all k ∈ C, v ∈ V , w ∈ W

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

(k · v)⊗ w = v ⊗ (k · w) = k · (v ⊗ w)

If {v1, . . . , vn} is a basis for V and {w1, . . . , wm} is a basis for W , then {vi ⊗ wj}
is a basis for V ⊗W .

Let (ρ1, V1) and (ρ2, V2) be two representations of a group G. The tensor
product representation (ρ1 ⊗ ρ2, V1 ⊗ V2) is defined as

(ρ1 ⊗ ρ2)(g)(v1 ⊗ v2) := ρ1(g)(v1)⊗ ρ2(g)(v2)

and extended to all vectors in V ⊗W by linearity. It has dimension dim(V1)·dim(V2).
If dimV , dimW < ∞, then there is a natural isomorphism of vector spaces

(preserving G-actions, if defined) from W ⊗ V to Hom(V,W).

2.9. Topological groups. A topological group is a group which is also a topo-
logical space and for which the group operation is continuous. It is called compact
if it is so as a topological space.

A representation of a topological group G on a finite-dimensional vector space
V is a continuous group homomorphism

ρ : G → GL(V),

with the topology of GL(V) inherited from the space End(V) of linear self-maps.
Notice that now, we can naturally replace 1

|G|
∑

g∈G with
∫
G

dg (see Haar measure,

Borel measure, etc).

10 ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES

2.10. Clebsch-Gordan decomposition. Let (ρ1, V1) and (ρ2, V2) be unitary ir-

reducible G-representations of a compact group G. Let Ĝ denote the set of isomor-
phisms classes f unitary irreducible representations of V

Their tensor product ρ1 ⊗ ρ2 is no necessary irreducible. However, there exists
an isomorphism

ϕ : Vl ⊗ Vk −→ ⊕j∈Ĝ ⊕mj,lk

s=1 Vj

such that Vj are irreducible, where mj,lk the multiplicity of irreducible representa-
tion j in the tensor product of irreducible representations l and k. This is called
Clebsch-Gordan decomposition.

Consider a choice of basis for Vj , say

{e1j , e2j , . . . , e
dimVj

j }

Hence, eml ⊗enk are basis elements in Vl⊗Vk which are mapped to the basis elements
of ⊕mj,lk

s=1 Vj . Hence we get a matrix associated to ϕ, its elements are calledClebsch-
Gordan coefficients

A real-valued function f : R → R is called a square-integrable function if∫ ∞

−∞
|f(x)|2 dx < ∞

Let L2(R denote the space of square-integrable functions. L2(R) is a vector
space and a Hilbert space.

Theorem 5 (Peter-Weyl). The space of square integrable functions on G is an
Hilbert space, direct sum over finite dimensional irreducible representations V

L2(G)∼= ⊕ End(V)

where

f →
∫
G

f(g) · ρV (g) dg

The inverse map sends ϕ ∈ End(V) to the function

g → TrV (ρV (g)
∗ϕ)

Let G be a compact group and L2
k(G/H) as above. Denote by : Ĝ is the set of

isomorphism classes of G irreducible representations, (̂·) is a topological closure, and
by mj ≤ dimVj is the multiplicity of irreducible representation of Vj in L2

k(G/H).

Theorem 6. The quotient representation
(
ρ
G/H
quot , L

2
k(G/H)

)
decomposes into ir-

reducible subrepresentations

L2
k(G/H)∼= ⊕̂j∈Ĝ ⊕mj

i=1 Vj

Notice that if k = C and H = {e} then mj = dimVj .

3. Equivariant Neural Networks

Let us see now how to construct some Equivariant Neural Networks. Let X
be the space of input features and Y the space of output features. Let
M : X → Y be a model. Usually we want to approximate some target function

T : X → Y

ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES 11

Let Hfull denote the space of all models under consideration during the training,
we call this the hypothesis space. Assume G acts on X and Y as

G×X → X , (g, x) → g ▶ x and G× Y → Y, (g, y) → g⋆y

We denote by Hinv the space of invariant models and by Hequiv the space of equi-
variant models. So we have

Hinv ⊂ Hequiv ⊂ Hfull

Consider now instead of having a network sending x → M(x) we have one which
sends Orb(x) → M(x).

X M //

π

��

Y

G\X
Minv

== x
M //

▶

��

M(x)

Orb(x)

M↓

::

So M↓ is an invariant map and Hinv can be thought of the space of models M↓.

3.1. Equivariant neural networks. A feed forward neural network is a sequence

X 0
L1−→ X 1

L2−→ X 2 · · ·
LN−1−→ XN

of parametrization layers Li : X i−1 → X i, where X i is a feature space (vector
space) and Li the i-th layer. Constructing equivariant networks typically involves
designing each layer to be individually equivariant. Therefore, each feature space
X i has it’s own group action:

▶i: G×X i → X i, (g, x) → g ▶i x.

In the network the input X 0 and output XN actions ▶0 and ▶N are determined
by learning task, while the intermediate actions are selected by the user.

For a layer Li to be invariant it’s input and output actions must satisfies the
following,

Li(g ▶i−1 x) = g ▶i Li(x), ∀g ∈ G, x ∈ X i−1

The visualization of equivariant neural networks is given below

X 0
L1 //

g▶0

��

X 1

g▶1

��

L2 // X 2

g▶2

��

L3 // · · ·
LN−1// XN−1

g▶N−1

��

LN // XN

g▶N

��
X 0 L1

// X 1
L2 // X 2

L3 // · · ·
LN−1// XN−1

LN // XN

3.2. Convolution Neural Networks: translation equivariance. AEuclidean
feature map in d dimensions with c channels is a function F : Rd → Rc that as-
signs a c-dimensional feature vector F (x) for every point x ∈ Rd.

Let E(d,c) be the set of all Euclidean feature maps Rd → Rc. A translation

group is called the additive group of the Euclidean space V = Rd. It acts on Rd

by shifting (or translation)

(Rd,+)× Rd → Rd, (t, x) → x+ t

It induces an action on E(d,c) via

(Rd,+)× E(d,c) → E(d,c), F → (t ▶ F)(x) = F (x− t)

12 ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES

This action is known as regular representation
The feature spaces of translation equivariant Euclidean Convolutional Neural

networks are vector spaces

L2(Rd,Rc) :=

{
Ed,c : Rd → Rc |

∫
Rd

||F (x)||2 dx
}

And the translation group action on this space as described above.
A translation equivariant network between feature maps with cin inputs channels

and cout output channels l are functions:

L : L2(Rd,Rcin −→ L2(Rd,Rcout

such that the following diagram commutes for t ∈ (Rd,+).

L2(Rd,Rcin)
L //

t▶
��

L2(Rd,Rcout)

t⋆
��

L2(Rd,Rcin)
L
// L2(Rd,Rcout)

Linear translation equivariant functions mapping between feature maps are essen-
tially convolutions.

3.3. Integral transforms. Let

Iκ : L2(Rd,Rcin) → L2(Rd,Rcout)

be integral transform map that is parametrized by a square integrable two-
argument kernel κ

κ : Rd × Rd → Rcin×cout , (x, y) → κ(x, y)

defined by

Iκ(F)(x) :=

∫
Rd

κ(x, y)F (y) dy

Let
K : Rd → Rcin×cout , ∆x → K(∆x)

defined by K(∆x) := κ(∆x, 0).

Theorem 7 (Regular translations intertwiners are convolutions). The integral
transform Iκ is equivariant if and only if the two-argument kernel κ satisfies

κ(x+ t, y + t) = κ(x,y), for any x,y, t ∈ Rd.

Moreover, the integral trasform reduces to a convolution integral

Iκ(F)(x) =

∫
Rd

K(x,y)F (y) dy

Proof. The integral transformation form Iκ is translation equivariant if Iκ(t ▶
F) = t⋆Iκ(F), for all t ∈ (Rd,+). Begin with the left-hand side of the equality:

Iκ(t ▶ F)(x) =

∫
Rd

κ(x,y)(t ▶ F)(y) dy =

∫
Rd

κ(x,y)F (y−t) dy =

∫
Rd

κ(x, ỹ+t)F (ỹ) dỹ,

where y = ỹ + t. While the right-hand side is given by

t⋆Iκ(F) =

∫
Rd

κ(x− t,y)F (y) dy, ∀t ∈ (Rd,+),∀F ∈ L2(Rd,Rcin)

ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES 13

implies the translation invariance constraint

κ(x+ t,y + t) = κ(x,y), ∀x,y, t ∈ Rd

of the neural connectivity (spatial weight sharing).
If we let t = −y then,

κ(x,y) = κ(x− y, 0) = κ(∆x, 0) = K(∆x).

Thus, this makes the integral transform a convolution. □

3.4. Translation equivariant bias summation. Let b : Rd → Rcin be a bias
field. The bias preserves the number of channels, so c := cin = cout Consider a bias
operation

Bβ : L2(Rd,Rc) → L2(Rd,Rc),

F → F + b

be an unconstrained bias summation that is parametrized by a square integrable
bias field b : Rd → Rc

Theorem 8 (Translation equivariant bias summation). The bias summation Bb

is equivariant if and only if b is constant (i.e., b(x) = b for some b ∈ Rc).

Proof. The bias summation Bb is equivariant if Bb(g ▶ F) = g ▶ Bb(F), ∀g ∈
(Rd,+).

Begin with the left-hand side of the equality:

Bb(g ▶ F)(x) = (g ▶ F)(x) + b(x) = F (x− g) + b(x),

While the right-hand side is given by

[g ▶ Bb(F)](x) = [g ▶ (F + b)](x) = F (x− g) + b(x− g),

Hence
b(x) = b(x− g) for arbitrary x, g ∈ Rd.

The bias field is required to be translation invariant. Thus, b(x) = b for b ∈ Rd. □

3.5. Translation equivariant local nonlinearities. Let

Sσ : L2(Rd,Rcin) → L2(Rd,Rcout), F → Sσ(F)

defined by Sσ(F)(x) =: σx(F (x)), where σ is a spatially dependent localized non-
linearity

σ : Rd × Rcin → Rcout , (x, y) → σx(y)

Theorem 9 (Translation equivariant local nonlinearities). The spatially dependent
localized nonlinearity operation Sσ is translation equivariant if and only if σx = s
for some x ∈ Rd.

Proof. The spatially dependent localized nonlinearity operation Sσ is translation
equivariant if :

Sσ(t ▶ F) = t⋆Sσ(F), ∀t ∈ (Rd,+)

Begin with the left-hand side of the equality:

Sσ[t ▶ F](x) = σx[t ▶ F](x) = σx[F (x− g)]

While the right-hand side is given by

[t⋆Sσ(F)](x) = Sσ[F (x− t)] = σx−t[F (x− t)]

Hence s := σx = σx−t for an arbitrary x, t ∈ Rd □

14 ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES

3.6. Translation equivariant local pooling operations. Local max pooling
is a nonlinear operation that generates a feature field where the value at a point
x0 ∈ Rd is determined by taking the maximum feature value across channels within
a defined pooling region Rx0

⊂ Rd centered around x0.

P : L2(Rd,Rc) → L2(Rd,Rc), F → max
y∈Rx

F (y)

Theorem 10 (Translation equivariance local max pooling). The local max pooling
operation. P is translation equivariant if and only if g−1Rx = Rx−g for all x ∈ Rd,
g ∈ (R,+).

Proof. The local max pooling operation P is translation equivariant if

P(g ▶ F) = g ▶ P(F), ∀x ∈ Rd, g ∈ (Rd,+)

Begin with the left-hand side:

P(g ▶ F)(x) = max
y∈Rx

[g ▶ F](y) = max
y∈Rx

[F (y − g)] = max
y∈g−1Rx

F (y)

And the right-hand side is given by

[g ▶ P(F)](x) = P[F (x− g)] = max
y∈Rx−g

F (y)

□

Definition. 11. Local average pooling calculates the channel-wise average of the
responses.

Pα : L2(Rd,Rc) → L2(Rd,Rc), F → α ⋆ F

where α is a scalar weighting kernel:

α : Rd → R.

Theorem 12 (Translation equivariance of local average pooling). The local average
pooling operation Pα is by construction translation equivariant.

Proof. The local max pooling operation P is translation equivariant if

Pα(g ▶ F)(x) = [g ▶ Pα(F)](x), ∀x ∈ Rd, g ∈ (Rd,+)

Pα(g ▶ F)(x) = max
y∈Rx

[g ▶ F](y) = max
y∈Rx

[F (y − g)] = max
y∈g−1Rx

F (y)

And the right-hand side is given by

[g ▶ P(F)](x) = P[F (x− g)] = max
y∈Rx−g

F (y).

. □

3.7. Affine group equivariance and steerable Euclidean CNNs. Let G ≤
GLd(R) be a given group. Affine groups Aff(G) are semi-direct products of trans-
lations t ∈ (Rd,+) and G, Aff(G) := (Rd,+)⋊G. The affine group Aff(G) acts on
Euclidean spaces,

Aff(G)× Rd → R2

(tg, x) → gx+ t

Notice that (
(th)−1, x

)
→ g−1(x− t)

ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES 15

3.7.1. Euclidean feature fields and induced affine group representations. The feature
spaces of Aff(G)-equivariant Euclidean steerable CNNs are vector spaces

L2(Rd,Rc) := {Rd → Rc |
∫
Rd

||F (x)||2 dx ≤ ∞}.

of square integrable c-channel feature fields in d spatial dimensions. The are asso-
ciated to some ρ : G → GLc(R). The affine group acts via

▶ρ: Aff(G)× L2(Rd,Rc) → L2(Rd,Rc),

(tg, F) → tg ▶ρ F := ρ(g)F (tg)−1

This action it corresponds to

Ind
Aff(G)
G ρ : Aff(G) → GL

(
L2(Rd,Rc)

)
,

tg → tg ▶ρ (·)

known as induced representation that turns G-representations to Aff(G)-representations.
Euclidean feature fields are elements of induced affine group representation

spaces Ind
Aff(G)
G . Hence, Ind

Aff(G)
G ρ is a functor that turns G-representations into

Aff(G)-representations. Our goal of the next section is to explore wthether the
same machinery can be constructed when we replace the affine space with a graded
vector space.

A full feature space of steerable convolutional neural networks (CNNs) comprises
multiple individual feature fields Fi : RdßRci of different types ρi and dimensional-
ities ci. The composite field F = ⊕iFi transforms according to the direct sum

⊕i Ind
Aff(G)
G ρi = Ind

Aff(G)
G ⊕iρi

and can therefore be viewed as being of type ⊕iρi The block structure of the
direct sum representation guarantees hereby that the individual fields fi trans-
form independently from each other, that is, their channels do not mix under G-
transformations. The following visual illustration is [12, Fig. 4.4]

Figure 1. Decomposition of steerable CNNs; [12, Fig. 4.4]

The goal for the rest of this paper is to develop a similar theory of what is
described in this section for artificial neural networks over graded vector spaces or
even more generally over graded modules.

16 ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES

4. Graded vector spaces

Here we give the bare minimum of the background graded vector spaces. The
interested reader can check details at [3], [7], [4] among other places.

A graded vector space is a vector space that has the extra structure of a grading
or gradation, which is a decomposition of the vector space into a direct sum of
vector subspaces, generally indexed by the integers. For the purposes of this paper
we will focus on graded vector spaces indexed by integers, but we also give below
the definition of such spaces for a general index set I.

4.1. Integer gradation. Let N be the set of non-negative integers. An N–graded
vector space, often called simply a graded vector space without the prefix N, is
a vector space V together with a decomposition into a direct sum of the form

V =
⊕
n∈N

Vn

where each Vn is a vector space. For a given n the elements of Vn are then called
homogeneous elements of degree n.

Graded vector spaces are common. For example the set of all polynomials in one
or several variables forms a graded vector space, where the homogeneous elements
of degree n are exactly the linear combinations of monomials of degree n.

Example 4. Let k be a field and consider V(2,3) the space of degree 2 and 3 homoge-
nous polynomials in k[x, y]. It is decomposed as V(2,3) = V2 ⊕ V3, whwre V2 is the
space of binary quadratics and V3 the space of binary cubics. Let u = [f, g] ∈ V2⊕V3.
Then the scalar multiplication works as

λ ⋆ u = λ ⋆ [f, g] = [λ2 f, λ3 g]

We will use this example repeatedly for the rest of the paper. □

Next we give another example that was our main motivation for machine learning
models over graded vector spaces.

Example 5 (Moduli space of genus 2 curves). Assume char k ̸= 2 and C a genus
2 curve defined over k. Then C has affine equation y2 = f(x) where f(x) is a
degree 6 polynomial. The ismorphism class of C is determined by its invariants
J2, J4, J6, J10, which are homogenous polynomials of degree 2, 4, 6, and 10 respec-
tively in terms of the coefficients of C. The moduli space of genus 2 curves defined
over k is isomorphic to the weighted projective space WP(2,4,6,10),k.

4.2. General gradation. The subspaces of a graded vector space need not be
indexed by the set of natural numbers, and may be indexed by the elements of any
set I. An I-graded vector space V is a vector space together with a decomposition
into a direct sum of subspaces indexed by elements i of the set I:

V =
⊕
i∈I

Vi

The case where I is the ring Z/2Z (the elements 0 and 1) is particularly important
in physics. A (Z/2Z)-graded vector space is known as a supervector space.

ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES 17

4.3. Graded linear maps. For general index sets I, a linear map between two
I-graded vector spaces f : V → W is called a graded linear map if it preserves
the grading of homogeneous elements,

f(Vi) ⊆ Wi, for all i ∈ I.

A graded linear map is also called a homomorphism (or morphism) of graded
vector spaces, or homogeneous linear map.

When I is a commutative monoid (such as N), then one may more generally
define linear maps that are homogeneous of any degree i in I by the property

f(Vj) ⊆ Wi+j , for all j ∈ I

where ”+” denotes the monoid operation. If moreover I satisfies the cancellation
property so that it can be embedded into an abelian group A that it generates
(for instance the integers if I is the natural numbers), then one may also define
linear maps that are homogeneous of degree i in A by the same property (but now
”+” denotes the group operation in A). Specifically, for i ∈ I a linear map will be
homogeneous of degree −i if

f(Vi+j) ⊆ Wj , for all j ∈ I, while f(Vj) = 0 if j − i /∈ I

Let us see a simple example of a graded linear map.

Example 6. Consider V(2,3) = V2 ⊕ V3 as in Example 4. Then a linear map
L : V(2,3) → V(2,3) satisfies

L([λ ⋆ u]) = L([λ2f, λ3g]) = [λ2L(f), λ3L(g)] = λ ⋆ [L(f), L(g)] = λ ⋆ L(u)

and

L ([f, g]⊕ [f ′, g′]) = L ([f + f ′, g + g′]) = [L(f) + L(f ′), L(g) + L(g′)]

= [L(f), L(g)]⊕ [L(f ′), L(g′)] = L([f, g])⊕ L([f ′, g′])

We can see things more explicitly if we choose a basis for V(2,3). Since V2 is the space

of binary quadratics ax2 + bxy + cy2 we can pick the standard basis of monomials
for V2 as B1 = {x2, xy, y2}. Similarly a standard basis for V3 can be chosen as
B2 = {x3, x2y, xy2, y3}. Hence, a basis for V(2,3) can be picked as

B = {x2, xy, y2, x3, x2y, xy2, y3}

For example, the polynomial F (x, y) =
(
x2 + xy + y2

)
+
(
x3 + x2y + xy2 + y3

)
has

coordinates u = [1, 1, 1, 1, 1, 1, 1]t in this basis. □

Further details on isomorphisms of graded rings of linear transformations of
graded vector spaces can be found in [3], [1], [2], and others.

Notice that the simplest graded linear map is the ”multiplication” by a scalar,
say L(x) = λx which has matrix representation the diagonal matrix

λq0 0 0 . . .

0 λq1 0
...

... 0
. . . 0

. 0 λqn

18 ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES

4.4. Operations over graded vector spaces. Some operations on vector spaces
can be defined for graded vector spaces as well. For example, given two I-graded
vector spaces V and W , their direct sum has underlying vector space V ⊕W with
gradation

(V ⊕W)i = Vi ⊕Wi

If I is a semigroup, then the tensor product of two I-graded vector spaces V and
W is another I-graded vector space,

(V ⊗W)i =
⊕

(j,k):j+k=i

(Vj ⊗Wk)

We will come back back to tensor products of vectors spaces when more details are
needed.

4.5. Inner graded vector spaces. Consider now the case when each Vi, is a finite
fdimensional inner space and let ⟨·, ·⟩i denote the corresponding inner product.
Then we can define an inner product on V as follows. For u = u1 + . . . + un and
v = v1 + . . .+ vn we define

⟨u,v⟩ = ⟨u1, v2⟩1 + . . .+ ⟨un, vn⟩n
which is the standart product. Then the Euclidean norm is as expected

∥u∥ =
√
u2
1 + . . .+ u2

n

If such Vi are not necessary finite dimensional then we have to assume that Vi is
a Hilbert space (i.e. a real or complex inner product space that is also a complete
metric space with respect to the distance function induced by the inner product).
This case of Hilbert spaces is especially important in machine learning and artificial
intelligence as pointed out by Thm. 5.

Obviously having a norm on a graded vector space is important for machine
learning if we want to define a cost function of some type. The simpler case of
Euclidean vector spaces and their norms was considered in [6], [11].

Example 7. Let us continuw with the space V(2,3) from Example 4. We continue

with with bases B1 = {x2, xy, y2} and B2 = {x3, x2y, xy2, y3} as in Example 6.
Hence, a basis for V(2,3) can be picked as B = {x2, xy, y2, x3, x2y, xy2, y3}. Let us
see how we could define an inner product in V(2,3). Let u,v ∈ V(2,3) given by

u = a+ b =
(
u1 x

2 + u2 xy + u3 y
2
)
+

(
u4 x

3 + u5 x
2y + u6 xy

2 + u7 y
3
)

v = a′ + b′ =
(
v1 x

2 + v2 xy + v3 y
2
)
+

(
v4 x

3 + v5 x
2y + v6 xy

2 + v7 y
3
)

Then

⟨u,v⟩ = ⟨a+ b,a′ + b′⟩ = ⟨a+ a′⟩+ ⟨b+ b′⟩
= u1v2 + u2v2 + u3v3 + u4v4 + u5v5 + u6v6 + u7v7

and the Euclidean norm is defined as expected ∥u∥ =
√
u2
1 + . . . u2

7. □

There are other ways to define a norm on graded spaces. Consider a Lie algebra
g. It is called graded if there is a finite family of subspaces V1, . . . , Vr such that
g = V1 ⊕ · · · ⊕ Vr and [Vi, Vj] ⊂ Vi+j , where [Vi, Vj] is the Lie bracket. When g is
graded we define for t ∈ R×, αt : g → g such that

αt(v1, . . . , vn) = (tv1, t
2v2, . . . , t

rvr).

ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES 19

We define a homogenous norm on g as

∥v∥ = ∥(v1, . . . , vn)∥ =
(
∥v1∥2r1 + ∥v2∥2r−2

2 + · · ·+ ∥vr∥2r
)1/2r

where ∥ · ∥i is the Euclidean norm in Vi. For details see [5, 6]. It is shown in [11]
that this norm satisfies the triangle inequality.

A more general approach is considered in [8] defining norms for line bundles
and using such norms in the definition of weighted heights on weighted projective
variaties.

5. Artificial neural networks over graded vector spaces

Let us now try to design artificial neural networks over graded vector spaces.
Let k be a field and for any integer n ≥ 1 denote by An

k (resp. Pn
k) the affine

(resp. projective) space over k. When k is an algebraically closed field, we will
drop the subscript. A fixed tuple of positive integers w = (q0, . . . , qn) is called set
of weights. The weight of α ∈ k will be denoted by wt(α). The set

Vn
w(k) := {(x1, . . . , xn) ∈ kn | wt(xi) = qi, i = 1, . . . , n}

is a graded vector space over k. From now on, when there is no confusion we will
simply use Vw for a graded vector space.

We follow the analogy with the classical case of artificial neural networks. A
neuron on a graded vector space Vw is a function f : Vn

w → k such that

αw(x) =

n∑
i−0

wqi
i xi + b,

where b ∈ k is a constant called bias. We can generalize neurons to tuples of
neurons via

ϕ := Vn
w(k) → Vn

w(k)

x → g (α0(x), . . . , αn(x))

for any gives set of weights w0, . . . ,wn. Then ϕ is a k-linear function with matrix
written as

ϕ(x) = W · x+ b,

for some b ∈ kn+1 and W an n× n matrix with integer entries.

Remark 1. There is a big confusion here when it comes to terminology. The
elements wi are called weights in classical neural networks, but these are different
from weights of the graded vector space qi. The matrix W is called the matrix of
weights since it is the matrix W = [wi,j], but again those weights are not the same
as weights q0, . . . , qn.

A non-linear function g : Vn
w → Vn

w is called an graded activation function.
A graded network layer is a function

Vn
w(k) → Vn

w(k)

x → g (W · x+ b)

for some some activation function g. A graded neural network is the composition
of many layers. The l-th layer

· · · −→ Vn
w(k)

ϕl−→ Vn
w(k) −→ · · ·

x −→ ϕl(x) = gl
(
W lx+ bl

)
,

20 ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES

where gl, W
l, and bl are the activation, matrix, and bias corresponding to this layer.

After m layers the output (predicted values) will be denoted by ŷ = [ŷ1, . . . , ŷn]
t,

where

ŷ = ϕm (ϕm−1 (. . . (ϕ1(x)) . . .)) ,

while the true values by y = [y1, . . . , yn]
t ∈ Vn

w.
The relu activation function for graded neural networks can be defined analou-

gusly. Let x = [x0, . . . , xn]
t ∈ V n

w . Then for each coordinate i = 0, . . . , n we
define

ReLui(xi) = max{0, |xi |1/qi}

Hence, is defined as

ReLu(x) := [ReLu0(x0), . . . ,ReLun(xn)]

Example 8. Consider V(2,3) as above. Let u ∈ V(2,3). Then, u = f + g such that
f ∈ V2 and g ∈ V3. Assume

f = 2x2 − 9xy + y2, and g = x3 − 2x2y + xy2 + y3

The coordinated of u with respect to the basis B fixed in Example 4 are uB =
[2,−3, 1, 1,−2, 11]t and

ReLu(u) = [
√
2, 3, 1, 1,

√
2, 1, 1]t.

It remains to be seen if this activation function or many others which can be
adopted in our settings will be efficient. Notice the similarity of this definition with
the weighted heights defined in [8, 9].

5.1. Artificial neural networks on weighted projective spaces. Our inten-
tion is to build a complete theory of equivariant neural networks over graded vector
spaces and make it possible to design machine learning models to study weighted
projective spaces and weighted varieties among other applications. It is unclear
how such models would perform, however mathematically there is every reason to
believe that computations on weighted projective varieties are more efficient than
over classical projective varieties.

In [10] we used current techniques of machine learning to study the weighted
projective space WP(2,4,6,10) which is the moduli soace of genus two curves. The
input features were invariants J2, J4, J6, and J10, which represent a point in a
graded space. However, current techniques are designed for classical vector spaces.
Hence, while we got some interesting results in [10] we weren’t sure what these
results represent. In other words, one can’t really understand what is happening in
a graded space unless the gradation becomes part of the training.

This paper is the first attempt in what we envision as a long project of machine
learning in graded vector spaces. Most of mathematical details have yet to be
worked out and one has to explore graded Lie algebras, graded manifolds and also
different gradings. Especially interesting is the case when the ground field is not
R or C, but Q or a a field of positive characteristic. Such tasks present challenges
mathematically and from the implementation point of view and their performance
and efficiency are still open questions.

ARTIFICIAL NEURAL NETWORKS ON GRADED VECTOR SPACES 21

References

[1] I. N. Balaba, Isomorphisms of graded rings of linear transformations of graded vector spaces,
Chebyshevskiu i Sb. 6 (2005), no. 4(16), 7–24. MR2455670 ↑17

[2] Vitalij M. Bondarenko, Linear operators on S-graded vector spaces, 2003, pp. 45–90. Special

issue on linear algebra methods in representation theory. MR1987327 ↑17
[3] N. Bourbaki, Algebra I, Springer, 1974. Chapter 3. ↑16, 17
[4] J.-L. Koszul, Graded manifolds and graded Lie algebras, Proceedings of the international

meeting on geometry and physics (Florence, 1982), 1983, pp. 71–84. MR760837 ↑16
[5] Martin Moskowitz, An extension of Minkowski’s theorem to simply connected 2-step nilpotent

groups, Port. Math. 67 (2010), no. 4, 541–546. MR2789262 ↑19
[6] , The triangle inequality for graded real vector spaces of length 3 and 4, Math. Inequal.

Appl. 17 (2014), no. 3, 1027–1030. MR3224852 ↑18, 19
[7] Steven Roman, Advanced linear algebra, Third, Graduate Texts in Mathematics, vol. 135,

Springer, New York, 2008. MR2344656 ↑4, 16
[8] S. Salami and T. Shaska, Local and global heights on weighted projective varieties, Houston

J. Math. 49 (2023), no. 3, 603–636 (English). ↑3, 19, 20
[9] , Vojta’s conjecture on weighted projective varieties (2024), available at

arXiv:2309.10300. ↑3, 20
[10] E. Shaska and T. Shaska, Machine learning for moduli space of genus two curves (2024),

available at arXiv:2403.17250. ↑2, 3, 20
[11] Songpon Sriwongsa and Keng Wiboonton, The triangle inequality for graded real vector

spaces, Math. Inequal. Appl. 23 (2020), no. 1, 351–355. MR4061546 ↑18, 19
[12] Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling, Equivariant and coordinate

independent convolutional networks, University of Amsterdam, 2023. ↑3, 4, 15

http://www.ams.org/mathscinet-getitem?mr=2455670
http://www.ams.org/mathscinet-getitem?mr=1987327
http://www.ams.org/mathscinet-getitem?mr=760837
http://www.ams.org/mathscinet-getitem?mr=2789262
http://www.ams.org/mathscinet-getitem?mr=3224852
http://www.ams.org/mathscinet-getitem?mr=2344656
https://arxiv.org/abs/2309.10300
https://arxiv.org/abs/2403.17250
http://www.ams.org/mathscinet-getitem?mr=4061546

	1. Introduction
	2. Mathematical foundations of artificial neural networks
	2.1. Artificial Neural Networks
	2.2. Symmetries
	2.3. Groups acting on sets
	2.4. Invariant and equivariant maps
	2.5. Quotient spaces
	2.6. Group representations
	2.7. Quotient representation:
	2.8. Tensor products
	2.9. Topological groups
	2.10. Clebsch-Gordan decomposition

	3. Equivariant Neural Networks
	3.1. Equivariant neural networks
	3.2. Convolution Neural Networks: translation equivariance
	3.3. Integral transforms
	3.4. Translation equivariant bias summation
	3.5. Translation equivariant local nonlinearities
	3.6. Translation equivariant local pooling operations
	3.7. Affine group equivariance and steerable Euclidean CNNs

	4. Graded vector spaces
	4.1. Integer gradation
	4.2. General gradation
	4.3. Graded linear maps
	4.4. Operations over graded vector spaces
	4.5. Inner graded vector spaces

	5. Artificial neural networks over graded vector spaces
	5.1. Artificial neural networks on weighted projective spaces

	References

