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Abstract. We use neural networks to investigate properties of irreducible polynomials f ∈ Q[x] and
especially their Galois groups Gal (f). While for relatively small degree f(x) methods of determining

Gal (f) are known, our goal is to quickly train models which work for any degree polynomial with reasonable

high degree of accuracy.

1. Introduction

Galois theory has a special place in mathematics, because it is about something fundamental as solving
a polynomial equation in one variable. When most people know how to use the quadratic formula, fewer
would be able to remember formulas for solving cubics and quartics. Things get even more interesting when
the degree is ≥ 5, since such formulas do not exist for a generic polynomial, even though they do exist for
special polynomials (i.e. polynomials such that their Galois group is solvable).

For the experts it is clear how to make the jump from a solvable Galois group of the polynomial to the
formulas. The solvable group provides a solvable tower of subgroups which corresponds to a solvable tower
of subfields of the splitting field of the polynomial. This solvable tower of subfields has cyclic extensions in
every step and therefore corresponds to algebraic substitutions of the form u = xn. This process is known
as solving the polynomial by radicals. It is a rather complicated process when one tries to work out all
the cases explicitly even for small degrees. One of the goals of this paper is to suggest a machine learning
approach to find such formulas for higher degree polynomials. Then such formulas could be verified using
Lean or some other format method.

Of course, the scope of Galois theory is much wider and deeper than figuring out formulas by radicals.
Hence this use of machine learning in Galois theory can be used in a wide variety of methods and open
questions. This paper is envisioned as a start of a large and long project of using data science in Galois
theory.

[4, 13,14,16]

E-mail addresses: elirashaska@oakland.edu, shaska@oakland.edu.

1
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2. Preliminaries

In this section we will go over some preliminary results on polynomials. Let k be a field. A degree d ≥ 1
polynomial f ∈ k[x] will be denoted by

(1) f(x) = adx
d + ad−1x

d−1y + · · ·+ a0

Since we want to identify polynomials up to multiplication by a non-zero constant it is convenient sometimes
to think of them in their projective form.

Let k[x, y] be the polynomial ring in two variables and Vd denote the (d + 1)-dimensional subspace of
k[x, y] consisting of homogeneous polynomials

(2) f(x, y) = adx
d + ad−1x

d−1y + · · ·+ a0y
d

of degree d. Elements of Vd are called binary forms of degree d.

To every polynomial f(x) we associate a binary form f(x, y) = ynf
(

x
y

)
as above, which is called the

homogenization of f(x). Conversely, every binary form f(x, y) can be associated to a polynomial f(x, 1),
called the dehomogenization of f(x, y).

2.1. Binary forms. GL2(k) acts as a natural group of automorphisms on k[x, y]. Denote by f → fM this
action. It is well known that SL2(k) leaves a bilinear form (unique up to scalar multiples) on Vd invariant.
If k is algebraically closed then f(x, y) can be factored as

(3) f(x, y) = (β1x− α1y) · · · (βdx− αdy) =
∏

1≤i≤d

det

((
x αi

y βi

))
Points with homogeneous coordinates (αi, βi) ∈ P1 are called the projective roots of f . For M ∈ GL2(k)
we have

fM (x, y) = (detM)
d
(β

′

1x− α
′

1y) · · · (β
′

dx− α
′

dy), where

(
α

′

i

β
′

i

)
= M−1

(
αi

βi

)
.

Consider a0, a1, . . . , ad as transcendentals over k (coordinate functions on Vd). Then the coordinate ring
of Vd can be identified with k[a0, . . . , ad]. There is an action of GL2(k) on k[a0, . . . , ad] via

GL2(k)× k[a0, . . . , ad] → k[a0, . . . , ad]

(M,F ) → FM := F (fM ), for all f ∈ Vd.

Thus for a polynomial F ∈ k[a0, . . . , ad] and M ∈ GL2(k), define FM ∈ k[a0, . . . , ad] as F
M (f) := F (fM ),

for all f ∈ Vd. Then FMN = (FM )N . The homogeneous degree in a0, . . . , ad is called the degree of
F , and the homogeneous degree in x, y is called the order of F . An invariant is usually referred to an
SL2(k)-invariant on Vd. Hilbert’s theorem says that the ring of invariants Rd is finitely generated. Thus,
Rd is a finitely generated graded ring.

Let ξ0, . . . , ξn be a minimal set of generators of Rd and deg ξi = qi. The set of degrees (q0, . . . , qn) is
often called the set of weights.

Lemma 1. Let f, g ∈ Vd,M ∈ GL2(k), λ = (detM)
d
2 . Then f = gM if and only if

(ξ0(f), . . . ξi(f), . . . , ξn(f)) = (λq0 ξ0(g), . . . , λ
qi ξi(g), . . . , λ

qn ξn(g)) .

If k = Q we can choose ξ0, . . . , ξn ∈ Z[a0, . . . , ad] and primitive.

The theory of binary forms is quite extensive and well understood. However, the main goal of this paper
is to construct a database of irreducible polynomials f ∈ Q[x] so we can study their Galois groups. Hence,
we have to consider some other equivalences of polynomials.
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2.2. Equivalences of polynomials. Notice that any polynomial f ∈ Q[x] can be written as f = λg(x)
for some g ∈ Z[x]. Since f and g(x) = λf(x) have the same Galois group, it is enough to consider only
polynomials in Z[x].

Recall that GL2(Z) is the subgroup of GL2(Q) such that matrices have integer entries. Hence every
matrix M ∈ GL2(Z) has determinant detM = ±1 and entries in Z. .

Two polynomials f, g ∈ Z[x] of degree n are called Z-equivalent if f(x) = an g(ax+ b) for some a = ±1
and b ∈ Z.

Two degree n binary forms f, g ∈ Z[x, y] are called GL2(Z)-equivariant if g(x, y) = ±f(ax+by, cx+dy)

for some

[
a b
c d

]
∈ GL2(Z). Two degree n polynomials f, g ∈ Z[x] are called GL2(Z)-equivalent if their

homogenizations are GL2(Z)-equivalent, in other words if

g(x) = ±(cx+ d)n f

(
ax+ d

cs+ d

)
, for some

[
a b
c d

]
∈ GL2(Z).

f, g ∈ Q[x] are called Q-equivalent if f(x) = g
(

ax+b
cx+d

)
for a, b, c, d ∈ Q.

Lemma 2. Let f, g ∈ Z[x]. If f, g are Z-equivalent, then they are GL2(Z)-equivalent and their homogeniza-
tions are GL2(Q)-equivalent.

Hence the GL2(Q) orbit, is partitioned into GL2(Z)-orbits and each GL2(Z)-orbit into Z-orbits.

2.2.1. Tschirnhaus-equivalent. f and g (monic separable and irreducible of the same degree) are Tschirnhaus-
equivalent iff they have the same splitting field E and moreover, if we let P and Q be the subgroups of
G := Gal (E/k) fixing a root of f and g respectively, then P and Q are conjugate in G.

2.2.2. Hermite equivalence. Let f(x) ∈ Z[x] given as in Eq. (1) and α1, . . . , αd ∈ C its roots. Hence

f(x) =

d∑
i=0

aix
i = ad

d∏
i=0

(x− αi)

To every root αi we associate a linear form in new variables x1, . . . , xd via

αi → αd−1
i x1 + αd−2

i x2 + · · ·+ αixd−1 + xd

Then we associate to f the d-ary form

f −→ ad−1
d

d∏
i=1

(
αd−1
i x1 + αd−2

i x2 + · · ·+ αixd−1 + xd

)
=: [f ]

The d-ary form [f ] is called the Hermite form associated to f . It is easy to show that the Hermite form
is given by the resultant with respect to x of f(x) and g(x) = x1x

d−1 + x2x
d−2 + · · ·+ xd−1x+ xd, namely

[f ] = Res(f, g, x)

Hence, [f ](x1, . . . , xd) is a d-ary form with integer coefficients. Moreover

cont([f ]) = (cont(f))
d−1

Two polynomials f, g ∈ Z[x] of degree n are called Hermite equivalent if their corresponding Hermite
forms are GLn(Z)-equivalent.

The discriminant of a decomposable d-ary form

F (x1, . . . , xd) =

d∏
i=1

(αi,1x1 + · · ·+ αi,dxd)

is defined as

∆(F ) =
(
det (αi,j)i,j=1,...,d

)2
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Here are some properties of Hermitian forms. For proofs one can check [2].

Lemma 3. The following are true:

(i) The discriminant of any polynomials is the same as the discriminant of its Hermite form. In other
words, ∆([f ]) = ∆f .

(ii) Two polynomials which are Hermite equivalent have the same discriminants.
(iii) Let f, g ∈ Z[x] be GL2(Z)-equivalent polynomials. Then f and g are Hermite equivalent. Moreover, if

f and g are monic and Z-equivalent then they are Hermite equivalent.
(iv) (Hermite) There are finitely many Hermite equivalence classes of polynomials in Z[x] of a given degree

and given discriminant ∆ ̸= 0.

2.2.3. Julia equivalence. Hermite defined the equivalence class of polynomials to develop a reduction theory
for degree d > 2 polynomials. A reduction theory that was developed further by Julia; see [9] and [15,
?heights,?min-gen-2,?reduction-beshaj] for more recent treatments.

Let f(x, y) ∈ Z[x, y] be a degree n binary form

f(x, y) = a0x
n + a1x

n−1y + · · ·+ any
n

and suppose that a0 ̸= 0. Let the real roots of f(x, y) be αi, for 1 ≤ i ≤ r and the pair of complex roots βj ,
β̄j for 1 ≤ j ≤ s, where r + 2s = n. The form can be factored as

(4) f(x, 1) =

r∏
i=1

(x− αi) ·
s∏

i=1

(x− βi)(x− β̄i).

The ordered pair (r, s) of numbers r and s is called the signature of the form f .
We associate to f the two quadratics Tr(x, 1) and Ss(x, 1) of degree r and s respectively given by the

formulas

(5) Tr(x, 1) =

r∑
i=1

t2i (x− αi)
2, and Ss(x, 1) =

s∑
j=1

2u2
j (x− βj)(x− β̄j),

where ti, uj are to be determined. For a binary form f of signature (r, s) the quadratic Qf is defined as

(6) Qf (x, 1) = Tr(x, 1) + Ss(x, 1).

Let βi = ai + bi · I, for i = 1, . . . , s.
The discriminant of Qf is a degree 4 homogenous polynomial in t1, . . . tr, u1, . . . , us. We pick values for

t1, . . . tr, u1, . . . , us such that this discriminant is square free and minimal. Then we can use the reduction
theory of quadratics (with square free, minimal discriminant) to determine the reduced form for Qf . Define

(7) θT =
a20 ·∆T

t21 · · · t2r
, θS =

a20 ·∆S

u4
1 · · ·u4

s

Proposition 1. Let f ∈ Vn,Q with signature (r, s) and equation as in Eq. (4). Then Qf is a positive definite
quadratic form with discriminant Df given by the formula

Df =∆(Tr) + ∆(Ss)− 8
∑
i,j

t2iu
2
j

(
(αi − aj)

2 + b2j
)
.(8)

From the above formula it can be seen that Df is expressed in terms of the root differences. Hence, Df

is fixed by all the transpositions of the roots. However, it is not an invariant of the binary form. In order
to get an invariant we need to fix it by all symmetries of the roots, hence by an element of order n. Indeed
Dn

f is an invariant of the binary form f as we will see later. We define the θ0 of a binary form as follows

(9) θ0(f) =
a20 · |Df |n/2∏r
i=1 t

2
i

∏s
j=1 u

4
j

.
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Notice that in order for f to be in somewhat ”simpler” or ”minimal” form we would like the discriminant
Df to be minimal. Hence, we would like θ0(f) to be minimal. Consider θ0(t1, . . . , tr, u1, . . . , us) as a
multivariable function in the variables t1, . . . , tr, u1, . . . , us. We would like to pick these variables such that
Qf is a reduced quadratic, hence Df is minimal. This is equivalent to θ0(t1, . . . , tr, u1, . . . , us) obtaining a
minimal value.

Proposition 2. The function θ0 : Rr+s → R obtains a minimum at a unique point (t̄1, . . . , t̄r, ū1, . . . , ūs).

Choosing (t̄1, . . . , t̄r, ū1, . . . , ūs) that make θ0 minimal gives a unique positive definite quadratic Qf (x, z).
We call this unique quadratic Qf (x, z) for such a choice of (t̄1, . . . , t̄r, ū1, . . . , ūs) the Julia quadratic of
f(x, z), denote it by Jf (x, z), and the quantity θf := θ0(t̄1, . . . , t̄r, ū1, . . . , ūs) the Julia invariant.

Lemma 4. Consider SL2(Q) acting on Vn,Q. Then θ is an SL2(Q)- invariant and J is an SL2(Q) covariant
of order 2.

Performing Julia reduction symbolically is very difficult, but a machine learning approach is used in [11]
to perform Julia reduction to higher degree polynomials.

Hence, our database will have irreducible polynomials f(x) ∈ Q[x] (up to the above equivalence) which
are represented as polynomials in Z[x]. There are two main issues here:

i) identifying Q-equivalence classes of polynomials,
ii) determining a method of listing and ordering such polynomials.
The first issue can be addressed via the classical invariant theory of binary forms, which motivates the

material for the rest of this section. The second issue can be addressed via heights of polynomials which is
the focus of next section.

2.3. Proj Rd as a weighted projective space. Let ξ0, . . . , ξn be the generators of Rd with degrees
q0, . . . , qn respectively. Since all ξ0, . . . , ξi, . . . , ξn are homogenous polynomials then Rd is a graded ring and
Proj Rd as a weighted projective space.

Let w := (q0, . . . , qn) ∈ Zn+1 be a fixed tuple of positive integers called weights. Consider the action of
k⋆ = k \ {0} on An+1(k) as follows

λ ⋆ (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn)

for λ ∈ k∗. The quotient of this action is called aweighted projective space and denoted byWPn
(q0,...,qn)(k).

It is the projective variety Proj (k[x0, ..., xn]) associated to the graded ring k[x0, . . . , xn] where the variable
xi has degree qi for i = 0, . . . , n. We denote greatest common divisor of q0, . . . , qn by gcd(q0, . . . , qn). The
space WPn

w is called well-formed if

gcd(q0, . . . , q̂i, . . . , qn) = 1, for each i = 0, . . . , n.

We l denote a point p ∈ WPn
w(k) by p = [x0 : x1 : · · · : xn].

Let ξ0, ξ1, . . . , ξn be the generators of the ring of invariants Rd of degree d binary forms. A k-isomorphism
class of a binary form f is determined by the point

ξ(f) := [ξ0(f), ξ1(f), . . . , ξn(f)] ∈ WPn
w(k).

Moreover, for any two forms f, and g we have that f = gM for someM ∈ GL2(k) if and only if ξ(f) = λ⋆ξ(g),

for λ = (detA)
d
2 .

2.4. Generators of the ring of invariants. Finding generators for the ring of invariants Rd is a classical
problem of the XIX-century. Such generators are obtained in terms of transvections or root differences.
Below we list the generating set of Rd for d ≤ 10. From here on

f(x, y) =

d∑
i=0

(
d

i

)
aix

iyd−i

For given binary invariants f, g ∈ Vd the r-th transvection of f and g is denoted by (f, g)r.
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While there is no method known to determine a generating set of invariants for any Rd, we display a
minimal generating set for all 3 ≤ d ≤ 10. For the rest of this section f(x, y) is given as in Eq. (2) and a
minimal set of invariants is always picked as in lemma 1.

2.4.1. Cubics. A generating set for R3 is ξ = {ξ0}, where

ξ0 = ((f, f)2, (f, f)2)2 = −54a20a
2
3 + 36a1a3a0a2 − 8a32a0 − 8a31a3 + 2a22a

2
1

2.4.2. Quartics. A generating set for R4 is ξ = [ξ0, ξ1] with w = (2, 3), where

ξ0 = (f, f)4 and ξ1 = (f, (f, f)2)4

2.4.3. Quintics. A generating set for R4 is ξ = [ξ0, ξ1, ξ2] with w = (4, 8, 12), where

ξ0 = (c1, c1)2, ξ1 = (c4, c1)2, ξ2 = (c4, c4)2,

for c1 = (f, f)4, c2 = (f, f)2, c3 = (f, c1)2, c4 = (c3, c3)2.

2.4.4. Sextics. The case of sextics was studied in detail by XIX-century mathematicians (Bolza, Clebsch,
et al.) when char k = 0 and by Igusa for char k > 0. Let c1 = (f, f)4, c3 = (f, c1)4, c4 = (c1, c1)2. A
generating set for R6 is ξ = [ξ0, ξ1, ξ2, ξ3] with weights w = (2, 4, 6, 10), where

ξ0 = (f, f)6, ξ1 = (c1, c1)4, ξ2 = (c4, c1)4, ξ3 = (c4, c
2
3)4

Usually the invariants of binary sextics are denoted by [J2, J4, J6, J10] with J10 being the discriminant of
the sextic, but that is not the case here.

2.4.5. Septics. A generating set of R7 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4] with weights w = (4, 8, 12, 12, 20).
We define them as follows. Let

c1 = (f, f)6, c2 = (f, f)4, c4 = (f, c1)2, c5 = (c2, c2)4, c7 = (c4, c4)4

ξ0 = (c1, c1)2, ξ1 = (c7, c1)2, ξ2 = ((c5, c5)2, c5)4,

ξ3 =
(
(c4, c4)2, c

3
1

)
6
, ξ4 =

(
[(c2, c5)4]

2
, (c5, c5)2

)
4
.

2.4.6. Octavics. A generating set of R8 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5] with weights w = (2, 3, 4, 5, 6, 7).
We define them as follows. Let

c1 = (f, f)6, c2 = (f, c1)4, c3 = (f, f)4, c5 = (c1, c1)2.

Then the invariants are:

ξ0 = (f, f)8, ξ1 = (f, c3)8, ξ2 = (c1, c1)4, ξ3 = (c1, c2)4,

ξ4 = (c5, c1)4, ξ5 = ((c1, c2)2, c1)4.

2.4.7. Nonics. A generating set ofR9 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6] with weightsw = (4, 8, 10, 12, 12, 14, 16).
Let

c1 = (f, f)8, c2 = (f, f)6, c4 = (f, f)2, c5 = (f, c1)2, c6 = (f, c2)6,

c7 = (c2, c2)4, c9 = (c5, c5)4, c21 = (f, c2)2, c25 = (c4, c4)10, c27 = (c36, c6)3

ξ0 = (c1, c1)2, ξ1 = (c2, c
2
6)6, ξ2 = (((c25, f)6, c21)5, c2)6 ,

ξ3 = ((c7, c7)2, c7)4 , ξ4 = (c9, c
3
1)6, ξ5 = ((c2, c27)3)6 ,

ξ6 =
(
(c5, c5)2, c

5
1

)
10

.
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2.4.8. Decimics. A generating set of R8 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8] with weights w =
(2, 4, 6, 6, 8, 9, 10, 14, 14). Let

c1 = (f, f)8, c2 = (f, f)6, c5 = (f, c1)4, c6 = (f, c2)8,

c7 = (c2, c2)6, c8 = (c5, c5)4, c9 = (c2, c7)4, c10 = (c1, c1)2,

c16 = (c5, c5)2, c19 = (c5, c1)1, c25 = (c7, c7)2

ξ0 = (f, f)10, ξ1 = (c1, c1)4, ξ2 = (c5, c5)6,

ξ3 = (c6, c6)2, ξ4 = (c1, c8)4, ξ5 = (c19, c
2
1)8),

ξ6 = (c16, c
2
1)8, ξ7 = (c25, c9)4, ξ8 = (c210, c16)8.

2.5. Root differences. Invariants can also be expressed in terms of root differences. For example the
discriminant is given by

∆(f) =
∏
i ̸=j

(αi − αj).

An excellent article on invariants including root differences is [12]. Multiplicities of the roots determine the
stability of the binary forms via the Hilbert-Mumford criterion; see [5].

(i) If f has a root of multiplicity r > d
2 then ξ(f) = (ξ0, . . . , ξn) = (0, . . . , 0).

(ii) If d is even, then all binary forms with a root of multiplicity d
2 have the same invariants.

2.6. Heights and moduli heights. Let K be a number field, OK its ring of integers, and MK the set of
absolute values of K.

2.7. Heights of polynomials. A polynomial with n variables is denoted by

f(x1, . . . , xn) =
∑

i=(i1,...,in)∈I

aix
i1
1 · · ·xin

n

where all ai ∈ K, I ⊂ Z≥0, and I is finite. We use lexicographic ordering to order the terms in a given
polynomial, and x1 > x2 > · · · > xn. The (affine) multiplicative height of f is defined as follows

HA
K(f) =

∏
v∈MK

max
{
1, |f |nv

v

}
, where |f |v := max

j

{
|aj |v

}
is called the Gauss norm for any v ∈ MK . The (affine) logarithmic height of f is defined to be

hA
K(f) = hK([1, . . . , aj , . . . ]j∈I).

The (projective) multiplicative height is

(10) HK(f) =
∏

v∈MK

|f |nv
v

where nv is the completion of Kv; see [3] among other sources. The (projective) absolute multiplicative
height is defined as

H : Pn(Q) → [1,∞)

H(f) = HK(f)1/[K:Q],

It is a consequence of Northcott’s theorem that for any f(x, y) ∈ K[x, y]. there are only finitely many
polynomials g(x, y) ∈ K[x, y] such that HK(g) ≤ HK(f).

Let f(x0, . . . , xn) and g(y0, . . . , yn) be polynomials in different variables. Then, the projective height has
the following property

H(f · g) = H(f) ·H(g)

Before considering the height of polynomials in the same variables, we will consider |f · g|v. The following
lemma is true for the product of a finite number of polynomials.
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Lemma 5 (Gauss’s lemma). Let K be a number field and f, g ∈ K[x1, . . . , xn]. If v is not Archimedean,
then |fg|v = |f |v|g|v.

The proof can be found in [3, pg. 22].
An analogous Archimedean estimate is given by the following lemma. Gauss’s lemma and the following are

used to give an estimate of H(f1f2 · · · fr) in terms of H(fi) for 1 ≤ i ≤ r and f1, f2, . . . , fr ∈ K[x1, . . . , xn].

Lemma 6. Let f1, . . . , fr ∈ C[x1, . . . , xn], f = f1 · · · fr, and di = deg(f, xi). Then,

(11)

r∏
i=1

|fi|v ≤ e(d1+···+dn)|f |v.

The proof of this can be found in [8, pg. 232] and uses the concept of Mahler measure which is defined
as follows. Let f(x1, . . . , xn) ∈ C[x1, . . . , xn]. The Mahler measure is

M(f) := exp

(∫
Tn

log
∣∣f(eiθ1 , . . . , eiθn)∣∣ dµ1 · · · dµn

)
where T is the unit circle {eiθ|0 ≤ θ ≤ 2π} equipped with the standard measure dµ = 1

2πdθ. Then
M(fg) = M(f)M(g); see [8, pg. 230] for proof.
Lemma 7. Let K be a number field and f1, . . . , fr ∈ K[x1, . . . , xn]. Denote with deg fj the total degree
of fj. Then the following are true

(i) HA(f1 f2 · · · fr) ≤ N ·
∏r

j=1 HA(fj) ≤ r ·max1≤j≤r

{
h(fj) + (deg fj +m) log 2

}
.

(ii) HA(f1 + f2 + · · ·+ fr) ≤ r ·
∏r

j=1 H
A(fj).

(iii) If f1, . . . , fr ∈ OK [x1, . . . , xn], then

HA(f1 + f2 + · · ·+ fr) ≤ r ·max
j

{
HA(fj)

}[K:Q]

.

The converse of part (i) is known as Gelfand’s inequality.

Lemma 8 (Gelfand’s inequality). Let f1, . . . , fr ∈ Q[x1, . . . , xn], di = deg fi such that deg(f1 · · · fr, xi) ≤ di
for each 1 ≤ i ≤ r. Then

r∏
i=1

H(fi) ≤ e(di+···+dn) ·H(f1 · · · fr).

2.8. Homogenous polynomials. Next we focus on homogenous polynomials. For a fixed degree d ≥ 2
and f ∈ K[x0, . . . , xn] we define

|c(d, n)|v :=


(
n+ d

n

)
if v is Archimedean

1 if v is non-Archimedean

Lemma 9. Let K be a number field, f ∈ K[x0, . . . , xn] a homogenous polynomial of degree d, and α =

(α0, . . . , αn) ∈ K
n+1

. Then, the following hold:

(1) |f(α)|v ≤ |c(d, n)|v ·maxj
{
|αj |v

}d · |f |v, where |c(d, n)|v is
(
n+d
d

)
is v is non-Archimedean and 1

otherwise.
(2) H(f(α)) ≤ c0 ·H(α)d ·H(f).

Lemma 9 can be used to determine the height of invariants of binary forms.

Corollary 1. Let f ∈ K[x, y] as in Eq. (2) and α = (α0, α1) ∈ K
2
. Then,

H(f(α)) ≤ min
{
d+ 1, 2d+1

}
·H(α)d ·H(f).
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2.9. Minimal and moduli heights of forms. Let f(x, y) be a binary form and Orb(f) its GL2(K)-
orbit in Vd. As a consequence of Northcott’s theorem, there are only finitely many f ′ ∈ Orb(f) such that
H(f ′) ≤ H(f). Define the height of the binary form f(x, y) as follows

H̃(f) := min
{
H(f ′)|f ′ ∈ Orb(f), H(f ′) ≤ H(f)

}
we want to consider the following problem. For every f let f ′ be the binary form such that f ′ ∈ Orb(f)

and H̃(f) = H(f ′). Determine a matrix M ∈ GL2(K) such that f ′ = fM .
Let Bd be the moduli space of degree d binary forms defined over an algebraically closed field k. Then

Bd is a quasi-projective variety with dimension d− 3. We denote the equivalence class of f by f ∈ Bd. The
moduli height of f(x, z) is defined as

H(f) = H(f)

where f is considered as a point in the projective space Pd−3. A natural question would be to investigate if
the minimal height H̃(f) has any relation to the moduli height H(f).

Let {Ii,j}j=s
j=1 be a basis of Rd. Here the subscript i denotes the degree of the homogenous polynomial

Ii,j . The fixed field of invariants is the space V
GL2(K)
d and is generated by rational functions t1, . . . tr where

each of them is a ratio of polynomials in Ii,j such that the combined degree of the numerator is the same
as that of the denominator.

Theorem 2.1 ([?heights]). Let f be a binary form. Then, For any SL2(k)-invariant Ii of degree i we
have that

H (Ii(f)) ≤ c ·H(f)d ·H(Ii)

Moreover, H(f) ≤ c · H̃(f), for some constant c.

For a given degree d the constant c of the theorem can be explicitly computed. For binary sextics i this
constant is c = 228 · 39 · 55 · 7 · 11 · 13 · 17 · 43; see [?heights].

2.10. Weighted moduli height. For any point p = [x0 : · · · : xn] ∈ Pn
w,k we can assume, without loss

of generality, that p = [x0 : · · · : xn] ∈ Pn
w,k(Ok). Let w = (q0, . . . , qn) be a set of weights and Pn

w,k the

weighted projective space over a number field k. Let p ∈ Pn
w,k a point such that p = [x0, . . . , xn]. We define

the weighted multiplicative height of p as

(12) Hk(p) :=
∏

v∈Mk

max

{
|x0|

nv
q0
v , . . . , |xn|

nv
qn
v

}
.

The absolute weighted height of p ∈ Pn
w,k is the function H : Pn

w,Q → [1,∞),

(13) H(p) = Hk(p)
1/[k:Q],

where p ∈ Pn
w,k, for any k which contains Q(wgcd (p)). The absolute (logarithmic) weighted height

on Pn
w,Q is the function s : Pn

w,Q → [0,∞)

s(p) = log Hk(p) =
1

[k : Q]
Hk(p).

where again p ∈ Pn
w,k, for any k which contains Q(wgcd (p)).

Let Pw,k be a well-formed weighted projective space and x = [x0 : · · · : xn] ∈ Pw,k(k). Assume x
normalized (i.e. wgcdk(x) = 1). Clearly wgcd(x)| gcd(x0, . . . , xn) and therefore wgcd(x) ≤ gcd(x0, . . . , xn).
Let x be absolutely normalized. Then gcd(x0, . . . , xn) = 1. If x = [x0 : . . . , xn] is a normalized point then
by definition of the height

Hk(x) =
n

max
i=0

{|xi|
1
qi }
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3. Galois groups of a polynomials

Let F be a perfect field. For simplicity we only consider the case when charF = 0. Let f(x) be a degree
n = deg f irreducible polynomial in F[x] which is factored as follows:

(14) f(x) = (x− α1) . . . (x− αn)

in a splitting field Ef . Then, Ef/F is Galois because is a normal extension and separable. The group
Gal (Ef/F) is called the Galois group of f(x) over F and denoted by Gal F(f). The elements of Gal F(f)
permute roots of f(x). Thus, the Galois group of polynomial has an isomorphic copy embedded in Sn,
determined up to conjugacy by f . The main goal of this section is to determine Gal F(f). Gal F(f) can
be viewed as a permutation group of the roots α1, . . . , αn. Thus it is a subgroup of Sn, determined up to
conjugacy by f .

Proposition 3. The following are true:

(i) deg f | |G|
(ii) Let G = Gal F(f) and H = G ∩ An. Then H = Gal (Ef/F(

√
∆f )). In particular, G is contained in

the alternating group An if and only if the discriminant ∆f is a square in F.
(iii) The irreducible factors of f in F[x] correspond to the orbits of G. In particular, G is a transitive

subgroup of Sn if and only if f is irreducible.

Proof. The first part is a basic property of the splitting field Ef . (ii) We have ∆f = d2f , where df =∏
i>j(αi − αj). For g ∈ G we have g(df ) = sgn(g)df . Thus H = G ∩ An is the stabilizer of df in G. But

this stabilizer equals Gal (Ef/F(df )). Hence the claim.
(iii) G acts transitively on the roots of each irreducible factor of f . □

Lemma 10. The following are true:

(1) If σ ∈ Gal (Ef/F) is a transposition then σ(∆f ) = −∆f .
(2) If σ ∈ Gal (Ef/F) is an even permutation then σ(∆f ) = ∆f .
(3) Gal (Ef/F) is isomorphic to a subgroup of An if and only if ∆f ∈ F.

When n = 2 then f(x) = a2x
2 + a1x + a0. Thus, ∆f = a21 − 4a0a2. Hence Gal (f) ∼= A2 = {1} if and

only if ∆f is a square.

Lemma 11. Let f(x) ∈ F[x] be an irreducible polynomial of degree deg f = n. Then Gal F(x) is an affine
invariant of f(x). In other words, Gal (f) ∼= Gal (g) for any g(x) = f(ax+ b), for a, b ∈ F and a ̸= 0.

Let f(x, y) ∈ F[x, y] be a binary form of degree deg f = n. Let g(x) = f(x, 1). Can Gal (g) be
characterized in terms of invariants of the binary form f(x, y)? From section 2.4 we know that invariants
of binary forms do not change under linear substitutions. Also from lemma 11 is invariant under such
substitutions. Hence, we must be able to determine Gal (g) in terms of invariants of f(x, y). For the rest
of this section we will see how this can be done explicitly for cubics, quartics, and quintics.

3.1. Cubics. Let f(x) be an irreducible cubic polynomial in F[x]. From ?? we know that [Ef : F] = 3 or 6.
Hence, the Galois group Gal F(f) is a subgroup of S3 with order 3 or 6. Thus, Gal F(f) ∼= A3 if and only if
∆f is a square in F, otherwise Gal F(f) ∼= S3.

Lemma 12. Let f(x) ∈ F[x] be an irreducible cubic. Then G = A3 if and only if ξ0(f) = ∆f is a square in
F. Moreover, the following hold:

(i) ∆f > 0 if and only if f has three distinct real roots.
(ii) ∆f < 0 iff f has one real root and two non-real complex conjugate roots.

Since both A3 and S3 are solvable, we should be able to determine formulas to give the roots of f(x) in
terms of radicals. These formulas are known as Cardano’s formulas and we will skip them here.

Remark 1. What we notice from the cubics is that we can determine the Galois group simply by condition
on invariants. We will see next if that can be done for higher degree polynomials.
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3.2. Quartics. Let f(x) ∈ F[x] be an irreducible polynomial of degree 4. Then G := Gal (f) is a transitive
subgroup of S4. Further 4 | |G|, see Prop. 3. So the order of G is 4, 8, 12, or 24. It can be easily checked
that transitive subgroups of S4 of order 4, 8, 12, or 24 are isomorphic to one of the following groups

C4, D4, V4, A4, S4.

Consider the normalized polynomial

(15) f(x) = x4 + ax2 + bx+ c = (x− α1) . . . (x− α4)

with a, b, c ∈ F. Let Ef = F(α1, . . . , α4) be the splitting field of f over F. Since f has no x3-term, we have
α1 + · · ·+ α4 = 0. We assume ∆f ̸= 0, so α1, . . . , α4 are distinct. Let G = Gal F(f), viewed as a subgroup
of S4 via permuting α1, . . . , α4.

There are 3 partitions of {1, . . . , 4} into two pairs. S4 permutes these 3 partitions, with kernel

(16) V4 = {(12)(34), (13)(24), (14)(23), id}.
Thus S4/V4

∼= S3, the full symmetric group on these 3 partitions. Associate with these partitions the
elements

(17) β1 = α1α2 + α3α4, β2 = α1α3 + α2α4, β3 = α1α4 + α2α3

of Ef . If β1 = β2 then α1(α2 − α3) = α4(α2 − α3), a contradiction. Similarly, β1, β2, β3 are 3 distinct
elements. Then G acts as a subgroup of S4 on α1, . . . , α4, and as the corresponding subgroup of S3

∼= S4/V4

on β1, . . . , β3. Thus the subgroup of G fixing all βi is G ∩ V4. This proves the following:

Ef := F(α1, α2, α3, α4)

Ḡ=G∩V4

E := F(β1, β2, β3)

d

F

Lemma 13. The subgroup G ∩ V4 ≤ G corresponds to the subfield F(β1, β2, β3), which is the splitting field
over F of the cubic polynomial ( cubic resolvent)

(18) g(x) = (x− β1)(x− β2)(x− β3) = x3 − ax2 − 4cx+−b2 + 4ac

The roots βi of the cubic resolvent can be found by Cardano’s formulas. The extension F(α1, . . . , α4)/k(β1, β2, β3)
has Galois group ≤ V4, hence is obtained by adjoining at most two square roots to F(β1, β2, β3). Moreover,
∆(f, x) = ∆(g, x).

In general, for an irreducible quartic

f(x) = x4 + ax3 + bx2 + cx+ d

we can first eliminate the coefficient of x3 by the substituting x with x − a
4 . In terms of the binary forms

this corresponds to the transformation

(x, y) →
(
x− a

4
y, y

)
and the new quartic is fM for M =

[
1 −a/4
0 1

]
. Since M ∈ SL2(Q) then detM = 1 and the invariants of

fM are the same as those of f , namely ♠♠♠ Tony: [complete it]

ξ0(f) =

ξ1(f) =
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Moreover g(x) is

(19) g(x) := x3 − bx2 + (ac− 4d)x− a2d+ 4bd− c2.

The discriminant of f(x) is the same as the discriminant of g(x) and is given below:

∆f =− 27a4d2 + 18a3bcd− 4a3c3 − 4a2b3d+ a2b2c2 + 144a2bd2 − 6a2c2d− 80ab2cd

+ 18abc3 + 16b4d− 4b3c2 − 192acd2 − 128b2d2 + 144bc2d− 27c4 + 256d3
(20)

We denote by d := [F(β1, β2, β3) : F]. Then we have the following:

Lemma 14. The Galois group of f(x) is one of the following:

(i) d = 1 ⇐⇒ G ∼= V4.
(ii) d = 3 ⇐⇒ G ∼= A4.
(iii) d = 6 ⇐⇒ G ∼= S4.
(iv) If d = 2 then we have

a) f(x) is irreducible over F ⇐⇒ G ∼= D4

b) f(x) is reducible over F ⇐⇒ G ∼= C4

3.2.1. Solving quartics. The element (α1 + α2)(α3 + α4) is fixed by G ∩ V4, hence lies in K(β1, β2, β3). We
find

(21) −(α1 + α2)
2 = (α1 + α2)(α3 + α4) = β2 + β3

By this and symmetry we get Ferrari’s formulas

α1 + α2 =
√
−β2 − β3

α1 + α3 =
√
−β1 − β3

α1 + α4 =
√
−β1 − β2

(22)

or

α1 =

√
−β1 − β2 +

√
−β1 − β3 +

√
−β2 − β3

2

α2 =
−
√
−β1 − β2 −

√
−β1 − β3 +

√
−β2 − β3

2

α3 =
−
√
−β1 − β2 +

√
−β1 − β3 −

√
−β2 − β3

2

α4 =

√
−β1 − β2 −

√
−β1 − β3 −

√
−β2 − β3

2

(23)

This completes the case for the quartics.

3.3. Quintics. Now we are ready to handle quintics which has such a special case in the history of Galois
theory.

Lemma 15. Let f(x) ∈ F[x] be an irreducible quintic. Then its Galois group is one of the following C5,
D5, F5 = AGL(1, 5), A5, S5.

Proof. G is transitive, hence its 5-Sylow subgroup is isomorphic to C5 (generated by a 5-cycle). If C5 is
not normal, then G has at least 6 of 5-Sylow subgroups; then |G| ≥ 6 · 5 = 30, hence [S5 : G] ≤ 4 which
implies G = S5, A5. If C5 is normal in G then G is conjugate either C5, D5 (dihedral group of order 10)
or F5 = AGL(1, 5), the full normalizer of C5 in S5, of order 20 (called also the Frobenius group of order
20). □

Remark 2. If the discriminant of the quintic is a square in F then Gal (f) is contained in A5. Hence, it
is C5, D5, or A5.
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3.3.1. Solvable quintics. If G = S5, A5 then the equation f(x) = 0 is not solvable by radicals. We want to
investigate here the case G is not isomorphic to S5 or A5. Let f(x) be an irreducible quintic in F[x] given
by

(24) f(x) = x5 + c4x
4 + · · ·+ c0 = (x− α1) · · · (x− α5)

Let G = Gal (f), viewed as a (transitive) subgroup of S5 via permuting the (distinct) roots α1, · · · , α5. As
before Ef = F(α1, · · · , α5) denotes the splitting field.

A 5-cycle in S5 = Sym({1, . . . , 5}) corresponds to an oriented pentagon with vertices 1, . . . , 5. A 5-cycle
and its inverse correspond to a (non-oriented) pentagon, and the full C5 corresponds to a pentagon together
with its ”opposite”.

(a)

1

2

3 4

5

1

2

34

5

(b)

1

2

3 4

5

1

2

34

5

(c)

1

2

3 4

5

1

2

34

5

(d)

1

2

3 4

5

1

2

34

5

Thus F5, the normalizer of C5 in S5, is the subgroup permuting the pentagon and its opposite. D5 is the
subgroup of F5 fixing the pentagon (symmetry group of the pentagon), and C5 is the subgroup of rotations.
For example, F5 is generated by

(25) F5 = ⟨σ, τ | σ5 = τ4 = (στ)4 = σστσ−1τ−1⟩,

where σ = (12345) and τ = (2453). Thus if G ≤ F5 then G fixes

δ1 = (α1 − α2)
2(α2 − α3)

2(α3 − α4)
2(α4 − α5)

2(α5 − α1)
2

− (α1 − α3)
2(α3 − α5)

2(α5 − α2)
2(α2 − α4)

2(α4 − α1)
2

(26)

where the first (resp., second) term corresponds to the edges of the pentagon (resp., its opposite). There
are six 5-Sylow subgroups of S5 given by

H1 = ⟨(1, 2, 3, 4, 5)⟩ = {(), (1, 2, 3, 4, 5), (1, 3, 5, 2, 4), (1, 4, 2, 5, 3), (1, 5, 4, 3, 2)}
H2 = ⟨(1, 2, 3, 5, 4)⟩ = {(), (1, 2, 3, 5, 4), (1, 3, 4, 2, 5), (1, 5, 2, 4, 3), (1, 4, 5, 3, 2)}
H3 = ⟨(1, 2, 4, 5, 3)⟩ = {(), (1, 2, 4, 5, 3), (1, 4, 3, 2, 5), (1, 5, 2, 3, 4), (1, 3, 5, 4, 2)}
H4 = ⟨(1, 2, 4, 3, 5)⟩ = {(), (1, 2, 4, 3, 5), (1, 4, 5, 2, 3), (1, 3, 2, 5, 4), (1, 5, 3, 4, 2)}
H5 = ⟨(1, 2, 5, 3, 4)⟩ = {(), (1, 2, 5, 3, 4), (1, 5, 4, 2, 3), (1, 3, 2, 4, 5), (1, 4, 3, 5, 2)}
H6 = ⟨(1, 3, 4, 5, 2)⟩ = {(), (1, 3, 4, 5, 2), (1, 4, 2, 3, 5), (1, 5, 2, 4, 3), (1, 5, 3, 2, 4)}

To see the full invariance properties, we need to ”projectivize” and use the invariants of binary forms; see
section 2.4. Let y = 1 = βi. The generalized version of the δ1’s is δ̃1, formed by replacing αi − αj by

Dij = det

[
γi βi

γj βj

]
in the formulas defining the δi’s. In particular,

(27) δ̃1 = D2
12D

2
23D

2
34D

2
45D

2
51 −D2

13D
2
35D

2
52D

2
24D

2
41

Since S5 has six 5-Sylow subgroups let δ1, . . . , δ6 be the elements associated in this way to the six 5-
Sylow’s of S5, i.e., to the six pentagon-opposite pentagon pairs on five given letters. We can write them all
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explicitly as

δ̃2 = D2
12D

2
23D

2
35D

2
54D

2
41 −D2

13D
2
34D

2
42D

2
25D

2
51

δ̃3 = D2
12D

2
24D

2
45D

2
53D

2
31 −D2

14D
2
43D

2
32D

2
25D

2
51

δ̃4 = D2
12D

2
24D

2
43D

2
35D

2
51 −D2

14D
2
45D

2
52D

2
23D

2
31

δ̃5 = D2
12D

2
25D

2
53D

2
34D

2
41 −D2

15D
2
54D

2
42D

2
23D

2
31

δ̃6 = D2
13D

2
34D

2
45D

2
52D

2
21 −D2

14D
2
42D

2
23D

2
35D

2
51

(28)

Lemma 16. δσi = δi dhe δτi = δi për i = 1, . . . , 6.

Clearly, G permutes δ1, . . . , δ6. If G is conjugate to a subgroup of F5, it fixes one of δ1, . . . , δ6; this fixed
δi must then lie in F.

Thus, a necessary condition for the (irreducible) polynomial f(x) to be solvable by radicals is that one
δi lies in F, i.e., that the polynomial

(29) g(x) = (x− δ1) · · · (x− δ6) ∈ F[x]

has a root in F. It is also sufficient: If G fixes one δi then G is conjugate to a subgroup of F5, provided that
δ1, . . . , δ6 are all distinct. To check this is:

Exercise 1. Show δ1, . . . , δ6 are mutually distinct (under the hypothesis ∆f ̸= 0).

The coefficients of g(x) are symmetric functions in α1, . . . , α5, hence are polynomial expressions in
c0, . . . , c4. The goal is to find these expressions explicitly. This gives an explicit criterion to check whether
f(x) = 0 is solvable by radicals.

Lemma 17. Let sr(x1, . . . , x6), r = 1, . . . , 6, be the elementary symmetric polynomials

(30) sr =
∑

i1<i2<···<ir

xi1xi2 . . . xir .

Then dr := sr(δ̃1, . . . , δ̃6) is a homogeneous polynomial expression in b0, . . . , b5 of degree 4r. These polyno-
mials are invariant under the action of SL2(F) on binary quintics: For any M ∈ SL2(F) the quintic fM has
the same associated dr’s.

Proof. For αj := γj/βj we have δ̃i = (β1 · · ·β5)
4δi = b45δi. Thus dr = b4r5 sr(δ1, , . . . , δ6). But the

sr(δ1, , . . . , δ6) are polynomial expressions in the cj = bj/b5, for j = 0, . . . , 4. Thus dr is a rational func-
tion in b0, . . . , b5, where the denominator is a power of b5. Switching the roles of x and y yields that the
denominator is also a power of b0. Thus it is constant, i.e., dr is a polynomial in b0, . . . , b5. If we replace
each βj by cβj for a scalar λ then each δ̃i gets multiplied by λ4, so dr gets multiplied by λ4r. Thus dr is
homogeneous of degree 4r. The rest of the claim is clear. □
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(31) F(α1, . . . , α5)

F(δ1) F(δ2) F(δ3) F(δ4) F(δ5) F(δ6)

F(δ1, · · · , δ6)

F(s1, . . . , s6)

F

There are four basic invariants of quintics, denoted by J4, J8, J12, J18, of degrees 4,8,12 and 18, such that
every SL(2,F)-invariant polynomial in b0, . . . , b5 is a polynomial in J4, J8, J12, J18. To define J4, J8, J12, we
need auxiliary quantities

A =
1

100

(
20b4 − 8b1b3 + 3b22

)
,

B =
1

100
(100b5 − 12b1b4 + 2b2b3) ,

C =
1

100

(
20b1b5 − 8b2b4 + 3b23

)
and D,E, F,G defined by∣∣∣∣∣∣

10u+ 2b1v 2b1u+ b2v b2u+ b3v
2b1u+ b2v b2u+ b3v b3u+ 2b4v
b2u+ b3v b3u+ 2b4v 2b4u+ 10b5v

∣∣∣∣∣∣ = 103(Du3 + Eu2v + Fuv2 +Gv3)

Then J2, J8, and J12 are given by

J4 = 53(B2 − 4AC)

J8 = 25 · 56
[
2A(3EG− F 2)−B(9DG− EF ) + 2C(3FD − E2)

]
J12 = −210 · 59 · 3−1

[
4(3EG− F 2)(3FD − E2)− (9DG− EF )2

](32)

By using special quintics one gets linear equations for the coefficients expressing the dr’s in terms of
J4, J8, J12. The result is due to Berwick; see [10].

d1 = −10J4

d2 = 35J2
4 + 10J8

d3 = −60J3
4 − 30J4J8 − 10J12

d4 = 55J4
4 + 30J2

4J8 + 25J2
8 + 50J4J12

d5 = −26J5
4 − 10J3

4J8 − 44J4J
2
8 − 59J2

4J12 − 14J8J12

d6 = 5J6
4 + 20J2

4J
2
8 + 20J3

4J12 + 20J4J8J12 + 25J2
12
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Lemma 18. Let f(x) be a irreducible quintic over F and d1, . . . , d6 defined in terms of the coefficients of
f(x) as above. Then f(x) is solvable by radicals if and only if g(x) = x6 + d1x

5 + · · · d5x+ d6 has a root in
F.

Extending the method of invariants becomes harder for higher degree equations. For degree six equations
see [1] and [7]. We are not aware of explicit computations for degree d ≥ 6.
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4. Reduction modulo p

The reduction method uses the fact that once a every polynomial with rational coefficients can be trans-
formed into a monic polynomial with integer coefficients without changing the splitting field.

Let f(x) ∈ Q[x] be given by

(33) f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

Let d be the common denominator of all coefficients a0, · · · , an−1. Then g(x) := df(xd ) is a monic polynomial
with integer coefficients. Clearly the splitting field of f(x) is the same as the splitting field of g(x). Thus,
without loss of generality we can assume that f(x) is a monic polynomial with integer coefficients.

Theorem 4.1. (Dedekind) Let f(x) ∈ Z[x] be a monic polynomial such that deg f = n, Gal Q(f) = G,
and p a prime such that p ∤ ∆f . If fp := f(x) mod p factors in Zp[x] as a product of irreducible factors of
degree n1, n2, n3, · · · , nk, then G contains a permutation of type (n1) (n2) · · · (nk)

The Dedekind theorem can be used to determine the Galois group in many cases since the type of
permutation in Sn determines the conjugacy class in Sn. Consider for example polynomials of degree 5.
The cycle types for all groups that occur as Galois groups of quintics are given below.

(2) (2)2 (3) (4) (3)(2) (5)
S5 10 15 20 30 20 24
A5 15 20 24
F5 5 10 4
D5 5 4
C5 4

Table 1. Cycle types for Galois groups of quintics

In Table 2 we display the table for the type of elements in S6. As it can be seen from the tables this
method works well for degree 5 and 6. Unfortunately it does not work for degree d > 6.

() (2) (2)(2) (2)(2)(2) (3) (3)(2) (3)(3) (4) (4)(2) (5) (6) |G|
S6 1 15 45 15 40 120 40 90 90 144 120 720
A6 1 - 45 - 40 - 40 - 90 144 - 360
S5 1 - 15 10 - - 20 30 - 24 20 120

(S3 × S3)⋊ C2 1 6 9 6 4 12 4 - 18 - 12 72
A5 1 - 15 - - - 20 - - 24 - 60

C2 × S4 1 3 9 7 - - 8 6 6 - 8 48
(C3 × C3)⋊ C4 1 - 9 - 4 - 4 - 18 - - 36

S3 × S3 1 - 9 6 4 - 4 - - - 12 36
S4 1 - 3 6 - - 8 6 - - - 24
S4 1 - 9 - - - 8 - 6 - - 24

C2 ×A4 1 3 3 1 - - 8 - - - 8 24
C3 × S3 1 - - 3 4 - 4 - - - 6 18

A4 1 - 3 - - - 8 - - - - 12
D12 1 - 3 4 - - 2 - - - 2 12
S3 1 - - 3 - - 2 - - - - 6
C6 1 - - 1 - - 2 - - - 2 6

Table 2. Cycle types for Galois groups of sextics
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5. Transitive groups

Here is the number of transitive subgroups for n ≤ 47

n # Subgroups n # Subgroups n # Subgroups n # Subgroups
5 5 6 16 7 7 8 50
9 34 10 45 11 8 12 301
13 9 14 63 15 104 16 1954
17 10 18 983 19 8 20 1117
21 164 22 59 23 7 24 25000
25 211 26 96 27 2392 28 1854
29 8 30 5712 31 12 33 162
34 115 35 407 36 121279 37 11
38 76 39 306 40 315842 41 10
42 9491 43 10 44 2113 45 10923

Table 3. Number of transitive subgroups of Sn for select values of n

Table 4. Transitive Subgroups of Sn for n = 5, 6, 7, 11, 13, 17, 19

n Subgroups

5 C(5) = 5, D(5) = 5 : 2, F (5) = 5 : 4, A5, S5 ]
6 C(6) = 6 = 3[x]2, D6(6) = [3]2, D(6) = S(3)[x]2, A4(6) = [22]3, F18(6) = [32]2 = 3 ≀ 2,

2A4(6) = [23]3 = 2 ≀ 3, S4(6d) = [22]S(3), S4(6c) =
1
2 [2

3]S(3), F18(6) : 2 =
[
1
2S(3)

2
]
2,

F36(6) =
1
2 [S(3)

2]2, 2S4(6) = [23]S(3) = 2 ≀ S(3), L(6) = PSL(2, 5) = A5(6),
F36(6) : 2 = [S(3)2]2 = S(3) ≀ 2, L(6) : 2 = PGL(2, 5) = S5(6), A6, S6

7 C(7) = 7, D(7) = 7 : 2, F21(7) = 7 : 3, F42(7) = 7 : 6, L(7) = L(3, 2), A7, S7

11 C(11) = 11, D(11) = 11 : 2, F55(11) = 11 : 5, F110(11) = 11 : 10, L(11) = PSL(2, 11)(11),
M(11), A11, S11

13 C(13) = 13, D(13) = 13 : 2, F39(13) = 13 : 3, F52(13) = 13 : 4, F78(13) = 13 : 6,
F156(13) = 13 : 12,
L(13) = PSL(3, 3), A13, S13

17 C(17) = 17, D(17) = 17 : 2, F68(17) = 17 : 4, F136(17) = 17 : 8, F272(17) = 17 : 16,
L(17) = PSL(2, 16), L(17) : 2 = PZL(2, 16), L(17) : 4 = PYL(2, 16), A17, S17

19 C(19) = 19, D(19) = 19 : 2, F57(19) = 19 : 3, F114(19) = 19 : 6, F171(19) = 19 : 9,
F342(19) = 19 : 18, A19, S19
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6. Databases

6.1. Datasets of irreducible polynomials. In this section we want to create a database of irreducible
polynomials f ∈ Z[x] of degree deg f = n. Data will be stored in a Python dictionary. A polynomial
f(x) =

∑n
i=0 aix

i will be represented by its corresponding binary form f(x, y) =
∑n

i=0 aix
iyn−i. Hence our

points will be points in the projective space Pn
Q, i.e. points with integer coordinates

p = [an : · · · : a0] ∈ Pn
Q,

such that gcd(a0, . . . , an). Since f(x) is irreducible over Q and of degree deg f = n, then an ̸= 0 and a0 ̸= 0.
Moreover, ∆f ̸= 0.

6.2. Datasets with bounded height. Let us now trying to generate a dataset with a bounded height h
as defined in Eq. (10). We will denote the set of such polynomials by Ph

n . In other words

Ph
n :=

{
[an : · · · : a0] ∈ Pn

Q | a0an ̸= 0,∆f ̸= 0, HQ([an : · · · : a0]) ≤ h
}

where HQ is defined as in Eq. (10). To ensure that the points in the database are not repeated we key the

dictionary by the tuples
(
1, an−1

an
, . . . , a0

an

)
. This is safe since an ̸= 0. A dictionary in Python does not allow

key duplicates, which ensures that there are no duplicates in our data. For given h, n the cardinality of Ph
n

is bounded by

#Ph
n ≤ 4h2(2h+ 1)n−2

The proof is a straightforward counting argument. There are more sophisticated methods to count algebraic
points of bounded height on projective spaces; see for example [6] but we will work only over Q and our
heights will be relatively small which does not allow for much redundant data.

For a degree d ≥ 3 and height h one can use Sagemath and count such points as follows:

PP = ProjectiveSpace(d, QQ)

rational_points = PP.rational_points(h)

Below is the number of points for small d and h.

deg h=1 h=2 h=3 h =4 h=5
3 136 668 1 940 4 936
4 694 4 823 18 528 569 912
5 3 616 34 860 174 120 639 476
6 18 602 249 498

For every point p = [an : · · · : a0] we will compute the following attributes(
1,

an−1

an
, . . . ,

a0
an

)
: [p, ξ0, . . . , ξn,∆f , H(f),Hk(p),H(p), T2, T3, T5, T7,Gal Q(f),Relations, ]
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where
ξ0, . . . , ξn Invariants defined in section 2.4

∆f Discriminant of f(x)

H(f) Height of f(x)defined in Eq. (10)

Hk(p) Weighted moduli height as in Eq. (12)

H(p) Absolute weighted moduli height as in Eq. (13)

T2 Permutation type obtained by factorization modulo 2

T3 Permutation type obtained by factorization modulo 3

T5 Permutation type obtained by factorization modulo 5

T7 Permutation type obtained by factorization modulo 7

Gal Q(f) Gap Identity of the Galois group of f(x)

Relations Relations among invariants when possible determined by ....

After we complete this database we .....

Table 5. Irreducible degree 3 polynomials of height ≤ 5 and Galois group C3

# f ∆ # f ∆ # f ∆
1 ( 1, 3, -4, 1 ) 72 15 (-1, -3, 0, 3) 34 29 (1, 2, -5, 1) 192

2 ( -1, -4, -3, 1 ) 72 16 (1, -3, 0, 3) 34 30 (-1, -5, -2, 1) 192

3 ( 1, -1, -2, 1) 72 17 (5, 4, -5, 1) 132 31 (1, -5, 2, 1) 192

4 (1, -2, -1, 1) 72 18 (1, 1, -4, 1) 132 32 (-1, 2, 5, 1) 192

5 (-1, -2, 1, 1) 72 19 (5, -3, -2, 1) 132 33 (2, -1, -5, 2) 312

6 (-1, -1, 2, 1) 72 20 (-1, -4, -1, 1) 132 32 (2, -5, -1, 2) 312

7 (1, -4, 3, 1) 72 21 (1, -4, 1, 1) 132 35 (-2, -5, 1, 2) 312

8 (-1, 3, 4, 1) 72 22 (-5, -3, 2, 1) 132 36 (-2, -1, 5, 2) 312

9 (1, 0, -3, 1) 34 23 (-1, 1, 4, 1) 132 37 (3, -4, -5, 3) 612

10 (3, 0, -3, 1) 34 24 (-5, 4, 5, 1) 132 38 (3, -5, -4, 3) 612

11 (-1, -3, 0, 1) 34 25 (-1, -5, -4, 5) 132 39 (-3, -5, 4, 3) 612

12 (1, -3, 0, 1) 34 26 (1, -2, -3, 5) 132 40 (-3, -4, 5, 3) 612

13 (-3, 0, 3, 1) 34 27 (-1, -2, 3, 5) 132

14 (-1, 0, 3, 1) 34 28 (1, -5, 4, 5) 132

Remark 3. From 4936 polynomials of degree three and height ≤ 5 only forty of them have Galois group of
order 3. The discriminant ∆f of those forty polynomials has values ∆f = 72, 34, 132, 192, 312, and 612 as
shown in the Table.

The discriminant of the whole list takes values −26695 ≤ ∆f ≤ 5925.
Compare this to the formula which bounds the invariants
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Table 6. Polynomials of degree d = 3 and height h ≤ 5 and the number of Galois groups
in each case.l

n = 3

h #P3
h(Q) # irred A3 S3

1 40 12
2 272 136 4
3 1120 668 12
4 2928 1940 20
5 6928 4936 40

Table 7. Polynomials of degree 4 ≤ d ≤ 5 and height h ≤ 5 and the number of Galois
groups in each case.l

n = 4

h #P4
h(Q) # irred [4,1] [4,2] [8,3] [12,3] S4

1 121 34 2 2 10 - 20
2 1 441 694 2 10 114 4 564
3 8 161 4 823 4 25 422 32 4 340
4 27 841 18 528 24 90 1 318 52 17 044
5 78 721 56 500 42 142 2812 108 53 396

n = 5

h #P5
h(Q) # irred C5 D5 F (5) A5 S5

1 364 104 - - - - 104
2 7 448 3 616 0 12 8 12 3 584
3 58 096 34 860 0 100 28 76 34 656
4 257 544 174 120 4 192 104 180 173 640
5 877 240 639 476 8 388 268 460 638 352
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