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Abstract. This paper investigates the interplay between irreducible sextic polynomials, their invariants,

and associated Galois groups. We employ a blend of classical algebraic methods and modern computa-

tional techniques, including machine learning, to analyze these structures. Our key contributions include
the development of extensive datasets for sextics with bounded coefficients, the examination of weighted

moduli points, and the application of clustering and classification algorithms to reveal patterns in Ga-

lois group distributions. We explore implications for Malle’s conjecture, offering new statistical insights
into the prevalence of specific Galois groups based on polynomial height. This study not only advances

theoretical understanding but also suggests potential practical applications in computational algebra.
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1. Introduction

The complex relationship between polynomial invariants, their degree, and Galois groups has long
been a central theme in algebra. Sextic polynomials, in particular, present intriguing challenges due to
their higher degree and the variety of possible Galois groups they can exhibit. This paper builds on our
previous work, where we explored the intersection of Galois theory and machine learning in the context
of polynomial solvability and invariants [34]. Here, we extend this research by focusing specifically on
irreducible sextics, which are polynomials of degree six without rational roots, aiming to uncover deeper
patterns in their structural and algebraic properties.

The motivation for this study stems from both the theoretical allure of understanding sextics’ symmetry
through their invariants and the practical implications for computational mathematics. Sextic polynomials
can exhibit numerous transitive Galois groups, from the full symmetric group S6 to smaller, less symmetric
groups, making them a fertile ground for study with implications in areas like cryptography and coding
theory.

This paper is a natural combination of methods used in [33] and [34] We create datasets of irreducible
sextic polynomials with bounded heights, providing a foundation for empirical study. This involves gener-
ating polynomials and organizing them based on their coefficients’ magnitude and invariant properties.

We also examine weighted moduli points. Here, we discuss how weighted moduli points, derived from
polynomial invariants, classify sextics into equivalence classes, simplifying the study of their symmetries.

Moreover, we leverage machine learning techniques. Both unsupervised and supervised learning methods
are applied to explore the distribution of Galois groups. This includes clustering analyses to identify natural
groupings based on polynomial characteristics and predictive models for Galois group identification.

Finally, we connect our findings to Malle’s Conjecture. We test and interpret our results in the light of
Malle’s conjecture, which predicts the frequency of polynomials with specific Galois groups as a function
of height, offering insights into the distribution patterns of these groups.
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2. Preliminaries

This section outlines the foundational concepts and tools used throughout the paper, emphasizing
aspects specific to sextic polynomials and their Galois groups. For a broader introduction to these topics,
we refer readers to [34].

2.1. Irreducible Polynomials and Galois Groups. Let Q be the field of rational numbers and f(x)
be a degree six irreducible polynomial in Q[x] which is factored as follows:

(1) f(x) = (x− α1) . . . (x− αn)

in a splitting field Ef . Then, Ef/Q is Galois because is a normal extension and separable. The group
Gal (Ef/Q) is called the Galois group of f(x) over Q and denoted by Gal Q(f) or simply Gal (f). The
elements of Gal (f) permute roots of f(x). Thus, the Galois group of polynomial has an isomorphic copy
embedded in Sn, determined up to conjugacy by f . The main goal of this section is to determine Gal (f).

2.2. Transitive Subgroups of S6. The symmetric group S6, which consists of all permutations of six
elements, plays a key role in the study of irreducible sextic polynomials. A subgroup G of S6 is called
transitive if its action on the six roots of a polynomial is such that any root can be mapped to any other.
This property is directly related to the irreducibility of the polynomial over Q, as it ensures that no proper
subset of roots remains invariant under the action of G (see [34]).

There are exactly 16 transitive subgroups of S6, including the full symmetric group S6, the alternating
group A6, and smaller subgroups such as cyclic and dihedral groups. Each of these subgroups corresponds
to a distinct structure for the splitting field of the polynomial, determining specific algebraic properties
of its roots. These subgroups can be visualized in a lattice diagram, which organizes them based on
containment. For instance, the maximal subgroups of S6 highlight reductions in the symmetry of a sextic
polynomial.

Table 1. Transitive Subgroups of S6

Index Group Order Group Description

1 [6, 2] C(6) = 6 = 3[x]2
2 [6, 1] D6(6) = [3]2
3 [12, 4] D(6) = S(3)[x]2
4 [12, 3] A4(6) = [22]3
5 [18, 3] F18(6) = [32]2 = 3 ≀ 2
6 [24, 13] 2A4(6) = [23]3 = 2 ≀ 3
7 [24, 12] S4(6d) = [22]S(3)
8 [24, 12] S4(6c) =

1
2 [2

3]S(3)
9 [36, 10] F18(6) : 2 = [ 12S(3)

2]2
10 [36, 9] F36(6) =

1
2 [S(3)

2]2
11 [48, 48] 2S4(6) = [23]S(3) = 2 ≀ S(3)
12 [60, 5] L(6) = PSL(2, 5) = A5(6)
13 [72, 40] F36(6) : 2 = [S(3)2]2 = S(3) ≀ 2
14 [120, 34] L(6) : 2 = PGL(2, 5) = S5(6)
15 [360, 118] A6

16 [720, 763] S6

The classification of these transitive subgroups and the construction of their lattice were achieved using
GAP, a computational algebra system. GAP’s tools enabled efficient verification of group properties and
facilitated the generation of the table and diagram summarizing these relationships. Since the Galois
group of an irreducible sextic polynomial must be one of these transitive subgroups, this classification is
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essential for understanding the symmetries and invariants of such polynomials. By associating each sextic
polynomial with its corresponding Galois group, deeper insights into its algebraic structure can be gained.

Figure 1. Lattice of transitive subgroups of S6

2.3. Reduction Modulo Primes: Reduction modulo primes serves as a key tool for analyzing Galois
groups. By examining the factorization patterns of polynomials modulo , we gain insight into the cy-
cle types and subgroup structures of the associated Galois groups. This approach is a continuation of
techniques outlined in [34]. Below we display the table for the type of elements in S6.

() (2) (2)(2) (2)(2)(2) (3) (3)(2) (3)(3) (4) (4)(2) (5) (6) Order

S6 1 15 45 15 40 120 40 90 90 144 120 720
A6 1 - 45 - 40 - 40 - 90 144 - 360
S5 1 - 15 10 - - 20 30 - 24 20 120

(S3 × S3)⋊ C2 1 6 9 6 4 12 4 - 18 - 12 72
A5 1 - 15 - - - 20 - - 24 - 60

C2 × S4 1 3 9 7 - - 8 6 6 - 8 48
(C3 × C3)⋊ C4 1 - 9 - 4 - 4 - 18 - - 36

S3 × S3 1 - 9 6 4 - 4 - - - 12 36
S4 1 - 3 6 - - 8 6 - - - 24
S4 1 - 9 - - - 8 - 6 - - 24

C2 ×A4 1 3 3 1 - - 8 - - - 8 24
C3 × S3 1 - - 3 4 - 4 - - - 6 18

A4 1 - 3 - - - 8 - - - - 12
D12 1 - 3 4 - - 2 - - - 2 12
S3 1 - - 3 - - 2 - - - - 6
C6 1 - - 1 - - 2 - - - 2 6

Table 2. Cycle types for Galois groups of sextics

Notice that non-isomorphic transitive subgroups of S6 have different cycle types, which makes deter-
mining the Galois groups of sextics relatively easier than higher degree polynomials. We label the above
conjugacy classes above (not counting identity) as C1, . . . , C10 and define the signature of G as the
10-tuple

sig(G) = [α1, . . . , α10]

where αi = 1 if G has elements in Ci and αi = 0 otherwise. Hence,
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Table 3. Transitive Subgroups of S6

Index Group Order Group sig.

1 [6, 2] [0,0,1,0,0,1,0,0,0,1]
2 [6, 1] [0,0,1,0,0,1,0,0,0,0]
3 [12, 4] [0,0,0,0,0,0,0,0,0,0]
4 [12, 3] [0,0,0,0,0,0,0,0,0,0]
5 [18, 3] [0,0,1,1,0,1,0,0,0,1]
6 [24, 13] [0,0,0,0,0,0,0,0,0,0]
7 [24, 12] [0,0,0,0,0,0,0,0,0,0]
8 [24, 12] [0,0,0,0,0,0,0,0,0,0]
9 [36, 10] [0,0,0,0,0,0,0,0,0,0]
10 [36, 9] [0,0,0,0,0,0,0,0,0,0]
11 [48, 48] [1,1,1,0,0,1,1,1,0,1]
12 [60, 5] [0,1,0,0,0,1,0,0,1,0]
13 [72, 40] [1,1,1,1,1,1,0,1,0,1]
14 [120, 34] [0,1,1,0,0,1,1,0,1,1]
15 [360, 118] [0,1,0,1,0,1,0,1,1,0]
16 [720, 763] [1,1,1,1,1,1,1,1,1,1]

2.4. Binary sextics and their invariants. Following classical invariant theory, we represent sextic
polynomials in their binary form , which facilitates the computation of invariants. These invariants,
provide crucial insights into the structure and symmetries of the polynomial. To every polynomial f(x)
we associate a binary form

f(x, y) = ynf

(
x

y

)
as above, which is called the homogenization of f(x). Conversely, every binary form f(x, y) can be
associated to a polynomial f(x, 1), called the dehomogenization of f(x, y).

Two degree n binary forms f, g ∈ Z[x, y] are called GL2(Z)-equivariant if g(x, y) = ±f(ax+by, cx+dy)

for some

[
a b
c d

]
∈ GL2(Z). Two degree n polynomials f, g ∈ Z[x] are called GL2(Z)-equivalent if their

homogenizations are GL2(Z)-equivalent, in other words if

g(x) = ±(cx+ d)n f

(
ax+ d

cs+ d

)
, for some

[
a b
c d

]
∈ GL2(Z).

f, g ∈ Q[x] are called Q-equivalent if f(x) = g
(

ax+b
cx+d

)
for a, b, c, d ∈ Q.

We refer to [3] for notation and terminology. A binary sextic is given by

f(x, y) = a6x
6 + a5x

5y + · · · a1xy5 + a0y
6

such that the discriminant of the sextic on the right is nonzero. Hence, the equivalence class of f(x, y)
is determined by the invariants of f(x, y), which are commonly denoted by J2(f), J4(f), J6(f), J10(f) and
are homogenous polynomials of degree 2, 4, 6, and 10 respectively in the coefficients of f(x, y). Moreover,
the invariant J10(f) is the discriminant of the sextic and therefore J10(f) ̸= 0. Hence, the moduli space of
binary sextics is isomorphic to P(2,4,6,10) \ {J10 ̸= 0}.

The following invariants defined by Igusa in [15],

(2) t1 =
J5
2

J10
, t2 =

J5
4

J2
10

, t3 =
J5
6

J3
10
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are defined everywhere in the moduli space and are GL2-invariants. Tow binary forms are GL2(Q)-
equivalent if and only if they have the same absolute invariants.

2.5. Datasets and Bounded Heights: Building on [34], we generate datasets of irreducible sextic poly-
nomials with bounded heights. Heights are measured using the maximum absolute value of the polyno-
mial’s coefficients, ensuring a finite and manageable dataset. Points in the projective space represent these
polynomials.

Our Python dictionary will be keyed on ordered triples (t1, t2, t3), whcich are GL2(k̄)-invariants, hence
every entry in the dictionary corresponds to the unique isomorphism class of genus 2 curves defined over
Q̄.

Entry Value Type Description
0 (x, y, z) (t1, t2, t3) float32 absolute invariants
1 p [J2, J4, J6, J10] int normalized moduli point
2 p̄ int absolutely normalized point
3 wh Hk(p) float32 weighted height
4 awh H(p) float32 absolute weighted height
5 gcd gcd(p) float32 gcd of p
6 label1 T/F Boolean True=fine, False=coarse
7 [m,n] Aut(p) [int, int] Gap Identity
8 label2 p ∈ L3 Boolean
9 label3 p ∈ L5 Boolean
10 label4 p ∈ L7 Boolean

We will describe later how to normalize points p = [a, b, c, d] in P(2,4,6,20).
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3. Databases

For a degree d ≥ 3 and height h one can use Sagemath and count such points as follows:

PP = ProjectiveSpace(d, QQ)

rational_points = PP.rational_points(h)

For every point p = [an : · · · : a0] we will compute the following attributes(
1,

an−1

an
, . . . ,

a0
an

)
: [p, ξ0, . . . , ξn,∆f , H(f),Hk(p),H(p), T2, T3, T5, T7,Gal Q(f),Relations, ]

where
ξ0, . . . , ξn Invariants defined in ??

∆f Discriminant of f(x)

H(f) Height of f(x)defined in ??

Hk(p) Weighted moduli height as in ??

H(p) Absolute weighted moduli height as in ??

T2 Permutation type obtained by factorization modulo 2

T3 Permutation type obtained by factorization modulo 3

T5 Permutation type obtained by factorization modulo 5

T7 Permutation type obtained by factorization modulo 7

Gal Q(f) Gap Identity of the Galois group of f(x)

Relations Relations among invariants when possible determined by ....

Table 4. Polynomials of degree d = 6 and height h ≤ 5 and the number of Galois groups
in each case.l

n = 6

h #P6
h(Q) f(x) C6 G2 G3 S3 G5 G6 G7 G8 G9 G10 G11 A6 G13 G14

1 1 093 292 4 - - - - - - - 2 20 - - 8 18
2 37 969 18 602 4 2 12 - 12 - 8 10 72 106 8 4 348 316
3 409 585 249 498 4 6 80 14 36 12 44 60 192 396 26 84 1656 2156
4 2 351 329 1 613 884 8 12 272 30 128 168 180 120 30 1076 48 248 8640 6492
5 9 702 337 7 164 648 12 22 540 34 184 400 508 250 960 2262 98 672 18656 16770

Lemma 1. Moreover, 20 sextics f(x) with Gal (f) ∼= C6 and their SL2(Q)-invariants are:

Notice that in the above table there are 2 or 4 polynomials corresponding to the same moduli point
p. Counting them all shows that there are 4592 (1-times), 18183 (1-times), 4 (1-times), 2812 (1-times), 0
(1-times), 176 (1-times), 0 (1-times), 83 (1-times), 0 (1-times), 1 (1-times), 0 (1-times), 2 (1-times), for a
total of 25 853 distinct moduli points.

There is however the possibility that two different points p corresponds to the same moduli class because
such points are up to equivalence in WP2,4,6,10(Q). Next we will explain how to count such points in the
weighted projective space.

Remark 1. By using absolute invariants t1, t2, t3 we can count the points in the moduli space and there
are 25 853 such points.

Lemma 2. Polynomials with the same invariants (t1, t2, t3) have the same Galois groups.
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# f(x) p

1 x6 − x3 + 1 [−234, 1944,−129762,−19683]
2 x6 + x3 + 1

3 x6 − x5 + x4 − x3 + x2 − x+ 1 [−210, 1176,−76146,−16807]
4 x6 + x5 + x4 + x3 + x2 + x+ 1

5 x6 + 2x5 + 5x4 + 3x2 + x+ 1
6 x6 − 2x5 + 5x4 + 3x2 − x+ 1 [−400, 6076,−315952,−10955763]
7 x6 + x5 + 3x4 + 5x2 + 2x+ 1
8 x6 − x5 + 3x4 + 5x2 − 2x+ 1

9 x6 + 2x5 + 4x4 + x3 + 2x2 − 3x+ 1
10 x6 − 2x5 + 4x4 − x3 + 2x2 + 3x+ 1 [−602, 14896,−2453136,−1075648]
11 x6 + 3x5 + 2x4 − x3 + 4x2 − 2x+ 1
12 x6 − 3x5 + 2x4 + x3 + 4x2 + 2x+ 1

13 x6 + 6x4 + 5x2 + 1 [−720, 6468,−1435896,−153664]
14 x6 + 5x4 + 6x2 + 1

15 −x6 − x5 + 5x4 + 4x3 − 6x2 − 3x+ 1
16 −x6 + x5 + 5x4 − 4x3 − 6x2 + 3x+ 1 [936, 10140, 2926404, 371293]
17 −x6 − 3x5 + 6x4 + 4x3 − 5x2 − x+ 1
18 −x6 + 3x5 + 6x4 − 4x3 − 5x2 + x+ 1

19 3x6 − 6x3 + 6x2 − 3x+ 1 [−504, 22356,−3327156,−26946027]
20 3x6 + 6x3 + 6x2 + 3x+ 1

Table 5. The only sextics with height H ≤ 6 and Galois group C6

Proof. complete it
□
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4. Fixing the Galois group

The main question we would like to ask now if whether our data satisfy any patterns for a fixed group
G = Gal (f).

4.1. Malle’s conjecture. Malle’s conjecture deals with the distribution of number fields with a given
Galois group and bounded discriminant. Specifically, it predicts an asymptotic formula for the number
N(G,X) of number field extensions L/K where:

• K is a number field,
• L is an extension of K with Galois group G,
• the norm of the discriminant of L/K is bounded by X.

Malle conjectured that for each fixed finite group G, there exist constants c(G) and a(G) such that:

N(G,X) ∼ c(G)Xa(G)(logX)b(G)

where:

• a(G) = 1
d(G) , where d(G) is the smallest index of a subgroup of G that is not contained in any

proper normal subgroup of G.
• b(G) is related to the number of conjugacy classes of such subgroups.

This conjecture has been proven for specific groups like S3, S4, S5 and for certain abelian groups, but
counterexamples have been found for some groups, leading to modifications of the conjecture. The strong
form of the conjecture specifies the constant c(G) as well, but this has proven to be more challenging to
verify universally.

Let us assume that we want to count irreducible polynomials of a given degree with bounded coefficients
and specified Galois group. The goal is to estimate how many irreducible polynomials exist with specific
Galois groups, as their heights (a measure of the size of their coefficients) grow.

Gal (f) #
F36(6) : 2 = [S(3)2]2 = S(3)wr2 26 064
2S4(6) = [23]S(3) = 2wrS(3) 20 236

S4(6d) = [22]S(3) 2 608
D(6) = S(3)[x]2 1 185

A6 1 092
L(6) = PSL(2, 5) = A5(6) 706
F18(6) : 2 = [1/2.S(3)2]2 648

L(6) : 2 = PGL(2, 5) = S5(6) 534
2A4(6) = [23]3 = 2wr3 394
F18(6) = [32]2 = 3wr2 222
S4(6c) = 1/2[23]S(3) 128
F36(6) = 1/2[S(3)2]2 58

D6(6) = [3]2 43
A4(6) = [22]3 34

C(6) = 6 = 3[x]2 20

Table 6. Galois groups and their frequencies for height H ≤ 6.

Consider a finite group G, and let NG(h) denote the number of irreducible polynomials of a given degree
n, with Galois group G and height ≤ h. The analog of the Malle conjecture for polynomials predicts that:

Ng(h) ∼ CG · hk (log h)
m
,
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where CG is a constant that depends on the group G, k and m are parameters related to the structure of
the group G similar to how they appear in the original Malle conjecture.

Lemma 3. There are exactly 53 972 irreducible sextics which have Galois group not isomorphic to S6.
The list of such groups and their frequencies are as follows:
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