Jacobi, Anzeige von Legendre, Theorie des fonetions elliptiques. Troi- sieme Supplement. 1832.Â
Review of Legendre, Th\'eorie des fonctions elliptiques. Troiseme suppl\'em ent. 1832. J. reine angew. Math. 8, 413-417.
Jacobi; Ges. Werke Bd. 1. Berlin 1881, pag. 373;Â
Kotänyi, Zur Reduction hypereUiptischer Integrale. Wiener Sitzb. Bd. 88. 1883, Abth. IT, pag. 401.
Brioschi, Sur la reduction de l'integrale hyperelliptique ä l'elliptique par une transformation du troisieme degre. Ann. de TEc. norm. sup. (3) Bd. 8. 1891, pag. 227.
Bolza, Zur Reduction hyperelliptischer Integrale erster Ordnung auf elliptische mittelst einer Transformation dritten Grades. Math. Ann. Bd. 50. 1898, pag. 314
Bolza, Zur Reduction hyperelliptischer Integrale erster Ordnung auf elliptische mittelst einer Transformation dritten Grades. Nachtrag. Math. Ann. Bd. 51. 1899, pag. 478.
Kuhn M. R.: Curves of genus 2 with split Jacobian. Trans. Amer. Math. Soc. 307 (1988), 41--49
G. Frey and E. Kani, Curves of genus 2 covering elliptic curves and an arithmetic application. Arithmetic algebraic geometry (Texel, 1989), 153-176, Progr. Math., 89, Birkh¨auser Boston, MA, 1991.
G. Frey, On elliptic curves with isomorphic torsion structures and corresponding curves of genus 2. Elliptic curves, modular forms, and Fermat’s last theorem (Hong Kong, 1993), 79-98, Ser. Number Theory, I, Internat. Press, Cambridge, MA, 1995.
Shaska, T. Curves of genus 2 with (N,N) decomposable Jacobians. J. Symbolic Comput. 31 (2001), no. 5, 603--617.
Shaska, T.: Â Curves of genus two covering elliptic curves. Thesis (Ph.D.)--University of Florida. 2001. 72 pp. ISBN: 978-0493-20012-5, ProQuest LLC
Shaska, Tanush; Völklein, Helmut Elliptic subfields and automorphisms of genus 2 function fields. Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000), 703--723, Springer, Berlin, 2004.
Shaska, T. Genus 2 fields with degree 3 elliptic subfields. Forum Math. 16 (2004), no. 2, 263--280.
Magaard, Shaska, V\"olklein; Genus 2 curves that admit a degree 5 map to an elliptic curve. Forum Math. 21 (2009), no. 3, 547--566.
Shaska, T. Genus two curves covering elliptic curves: a computational approach. Computational aspects of algebraic curves, 206--231, Lecture Notes Ser. Comput., 13, World Sci. Publ., Hackensack, NJ, 2005. Â
Kumar, A.; Hilbert modular surfaces for square discriminants and elliptic subfields of genus 2 function fields. Res. Math. Sci. 2 (2015), Art. 24, 46 pp.