Preprints, Papers, Notes
sh-100: Diagonalizable weighted hypersurfaces
T. Shaskash-99: A mathematical framework to data fabrics
T. Shaskash-98: Hitchin spinors on genus-two curves with symmetries
A. Clingher, A. Malmendier, T. Shaskash-97: Finsler Metric Clustering in Weighted Projective Spaces.
T. Shaskash-96: Gröbner bases for weighted homogenous systems
T. Shaskash-95: Graded Transformers
T. Shaskash-94: Counting of Rational Points on Weighted Projective Spaces,Â
J. Mello and T. Shaskash-93: Isogenies, Kummer surfaces, and theta functions,Â
A. Clingher, A. Malmendier, T. Shaska,
NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur. Vol. 66sh-92: Computing Weierstrass form of superelliptic curves
T. Shaskash-91: Rational Points and Zeta Functions of Humbert Surfaces with Square Determinant over F_q,
J. Mello, S. Salami, E. Shaska, T. Shaska,Â
NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur. Vol. 66sh-90: Weighted Heights and GIT Heights
E. Shaska and T. Shaska
(submitted)sh-89:Â Graded Neural Networks
T. Shaska  Âsh-88: Optimization of Vector Functions Using the Max Norm
T. Shaskash-87: Rational points of weighted hypersurfaces over finite fields
J. Mello, S. Salami, T. Shaskash-86: Neuro-Symbolic Learning for Irreducible Sextics: Unveiling Probabilistic Trends in Polynomials
E. Shaska and T. Shaskash-85: Galois groups of polynomials and neurosymbolic networks
E. Shaska and T. Shaska
2024-06: A Neurosymbolic Framework for Geometric Reduction of Binary Forms, Â
Ilias Kostireas and Tony Shaska
Contemporary Math.  20252024-05: Polynomials, Galois groups, and Database-Driven Arithmetic
E. Curri and T. ShaskaÂ
Contemporary Math. Â Â 20252024-04: Rational Functions on the Projective Line from a Computational Viewpoint,
E. Badr, E. Shaska, T. Shaska2024-03: Machine learning for moduli space of genus two curves and an application to isogeny based cryptography,Â
E. Shaska and T. Shaska
Journal of Algebr Comb 61, 23 (2025).2024-02: Artificial neural networks on graded vector spaces  Â
Contemporary Math, 20252024-01: Equations for generalized superelliptic Riemann surfaces
R. Hidalgo, S. Quispe, T. Shaska2023-01: Â Vojta's conjecture on weighted projective varieties,
S. Salami, T. Shaska;
European Journal of Mathematics,  11, 12 (2025).     https://doi.org/10.1007/s40879-024-00804-72022-1: Local and global heights on weighted projective varieties,
S. Salami, T. Shaska;
Houston J. Math. Vol. 49, #3, (2023), pg. 603-6362021-2: Arithmetic inflection of superelliptic curves,Â
E Cotterill, I Darago, C. G López, C Han, T Shaska,Â
Michigan J. Math.Â2021-1: Geometry of Prym varieties for certain bielliptic curves of genus three and five,
Pure Appl. Math. Q. Â 17Â 1739--1784Â (2021)Â https://doi.org/10.4310/PAMQ.2021.v17.n5.a52020-1: Reduction of superelliptic Riemann surfaces,
Contemporary Math. 776Â 227--247Â (2022)Â Â https://doi.org/10.1090/conm/776/15614Â Â Â2020-i: Integrable systems: a celebration of Emma Previato's 65th birthday,Â
R. Donagi and T. Shaska, 458,1--12Â (2020)Â2020-ii: Algebraic geometry: a celebration of Emma Previato's 65th birthday,
R. Donagi and T. Shaska, 1--12 (2020)2019-5: The addition on Jacobian varieties from a geometric viewpoint,
Y. Kopeliovich, T. Shaska  https://arxiv.org/abs/1907.110702019-4: From hyperelliptic to superelliptic curves,
A. Malmendier and T. Shaska;
Albanian J. Math. 13 107--200 (2019)2019-3: Superelliptic curves with many automorphisms and CM Jacobians,
A. Obus and T. Shaska
Math. Comp. 90 2951--2975 (2021) https://doi.org/10.1090/mcom/3639Â2019-2: On isogenies among certain abelian surfaces,
A. Clingher, A. Malmendier, T. Shaska,Â
Mich. Math. J. 71 227--269 (2022) https://doi.org/10.1307/mmj/20195790Â2019-1: Weighted greatest common divisors and weighted heights,
J. Number Theory 213 319--346 (2020) https://doi.org/10.1016/j.jnt.2019.12.012Â2018-6: On automorphisms of algebraic curves, Contemporary Math. 724 175--212 (2019) https://doi.org/10.1090/conm/724/14590Â
2018-5: Kay Magaard (1962--2018),
Gerhard Hiss and Tony Shaska
Albanian J. Math. 12 33--35 (2018) https://albanian-j-math.com/archives/2018-05.pdf2018-4: Computing heights on weighted projective spaces,
J. Mandili, T. Shaska
Contemporary Math. 724 149--160 (2019) https://doi.org/10.1090/conm/724/14588  Â2018-3: Six line configurations and string dualities,
A.Clingher, A.Malmendier, T. Shaska,Â
Comm. Math. Phys. 371 159--196 (2019) https://doi.org/10.1007/s00220-019-03372-0Â2018-2: On the discriminant of certain quadrinomials,
Sh. Otake, T. Shaska,Â
Contemporary Math. 724Â 55--72Â (2019) https://doi.org/10.1090/conm/724/14585Â Â Â2018-1: Curves, Jacobians, and cryptography,
G. Frey, T. Shaska
Contemporary Math. 724Â 279--344Â (2019) https://doi.org/10.1090/conm/724/14596 Â2017-4: Coing Theory,
Alfred J. Menezes, Paul C. van Oorschot, David Joyner, Tony Shaska, Douglas R. Shier, Wayne Goddard,
Chapter to Handbook of Discrete and Combinatorial Mathematics2017-3: Some remarks on the non-real roots of polynomials, Sh. Otake, T. Shaska,
Cubo 20 67--93 (2018)2017-2: Isogenous components of Jacobian surfaces,
L. Beshaj, A. Elezi, T. Shaska,
Eur. J. Math. 6 1276--1302 (2020) https://doi.org/10.1007/s40879-019-00375-yÂ2017-1: Reduction of binary forms via the hyperbolic centroid,
A. Elezi, T. Shaska,Â
Lobachevskii J. Math. 42 84--95 (2021) https://doi.org/10.1134/s199508022101011x2016-6: On generalized superelliptic Riemann surfaces,
R. Hidalgo, S. Quispe, T. Shaska
Transformation Groups (2025) Â Â Â https://arxiv.org/abs/1609.095762016-5: Rational points in the moduli space of genus two, Contemp. Math., 703, 83--115Â (2018)Â https://doi.org/10.1090/conm/703/14132Â
2016-4: The Satake sextic in F-theory,
A. Malmendier, T. Shaska,Â
J. Geom. Phys. 120 290--305 (2017)  https://doi.org/10.1016/j.geomphys.2017.06.010Â2016-3: A universal genus-two curve from Siegel modular forms,
A. Malmendier, T. Shaska;Â
SIGMA Symmetry Integrability Geom. Methods Appl. 13 Paper No. 089, 17 (2017) https://doi.org/10.3842/SIGMA.2017.089Â2016-2: Self-inversive polynomials, curves, and codes,
D. Joyner, T. Shaska, Contemp. Math., 703, AMS, 2018, 189–208. https://doi.org/10.1090/conm/703/14138 Â2016-1: On the field of moduli of superelliptic curves,
R. Hidalgo, T. Shaska, Contemp. Math., 703, AMS, 2018, 47–62. https://doi.org/10.1090/conm/703/14130 Â2015-4: Theta functions of superelliptic curves, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 41, IOS Press, Amsterdam, 2015, 47–69.
2015-3: Weight distributions, zeta functions and Riemann hypothesis for linear and algebraic geometry codes, A. Elezi, T. Shaska, 41Â 328--359Â (2015)
2015-2: Weierstrass points of superelliptic curves, C. Shor, T. Shaska, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 41, IOS Press, Amsterdam, 2015, 15–46.
2015-1: The case for superelliptic curvesL. Beshaj, T. Shaska, E. Zhupa, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 41, IOS Press, Amsterdam, 2015, 1–14.
2014-2: Cyclic curves over the reals, M. Izquierdo, T. Shaska, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 41, IOS Press, Amsterdam, 2015, 70–83.
2014-1: Heights on algebraic curves, T. Shaska, L. Beshaj, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 41, IOS Press, Amsterdam, 2015, 137–175.
2013-7: Bielliptic curves of genus 3 in hyperelliptic moduli,
Appl. Algebra Engrg. Comm. Comput. 24Â 387--412 (2013) https://doi.org/10.1007/s00200-013-0209-9Â2013-4: 2-Weierstrass points of genus 3 hyperelliptic curves with extra involutions,
Comm. Algebra, 45Â 1879--1892Â (2017). https://doi.org/10.1080/00927872.2016.1226861Â Â Â2013-2: Theta functions and symmetric weight enumerators for codes over imaginary quadratic fields, T. Shaska, C. Shor,
Des. Codes Cryptogr. 76 217--235 (2015)  https://doi.org/10.1007/s10623-014-9943-7Â2013-1: On Jacobians of curves with superelliptic components, L. Beshaj, T. Shaska, C. Shor,
Contemp. Math., 629, American Mathematical Society, Providence, RI, 2014, 1–14. https://doi.org/10.1090/conm/629/12557  Â2013-i: Computational algebraic geometry and its applications, T. Shaska,
Appl. Algebra Engrg. Comm. Comput. 24 309--311 (2013)  https://doi.org/10.1007/s00200-013-0204-12013-ii: Computational algebraic geometry, T. Shaska,
J. Symbolic Comput. 57 1--2 (2013)  https://doi.org/10.1016/j.jsc.2013.05.0012012-2: Genus two curves with many elliptic subcovers, T. Shaska;
Comm. Algebra, 44 4450--4466 (2016) https://doi.org/10.1080/00927872.2015.10273652012-1: Some remarks on the hyperelliptic moduli of genus 3, T. Shaska;
Comm. Algebra,  42 4110--4130 (2014) https://doi.org/10.1080/00927872.2013.791305 Â2011-2: On superelliptic curves of level $n$ and their quotients, L. Beshaj, V. Hoxha, T. Shaska, Albanian J. Math. 5 115--137 (2011)
2011-1: Quantum codes from superelliptic curves, A. Elezi, T. Shaska, Albanian J. Math. 5 175--191 (2011)
2010-1: The arithmetic of genus two curves, T. Shaska, L. Beshaj, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 29, IOS Press, Amsterdam, 2011, 59–98.
2009-1: Theta functions and algebraic curves with automorphisms, T. Shaska, S. Wijesiri, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 24, IOS Press, Amsterdam, 2009, 193–237.
2008-5: On some applications of graphs to cryptography and turbocoding, T. Shaska, V. Ustimenko; Albanian J. Math. 2 249--255 (2008)
2008-4: Degree even coverings of elliptic curves by genus 2 curves, N. Pjero, M. Ramasaco, T. Shaska; Albanian J. Math. 2 241--248 (2008)
2008-3: Determining equations of families of cyclic curves, R. Sanjeewa, T. Shaska, Albanian J. Math. 2 199--213 (2008)
2008-2: On the homogeneous algebraic graphs of large girth and their applications, T. Shaska, V. Ustimenko;
Linear Algebra Appl. 430 1826--1837 (2009)  https://doi.org/10.1016/j.laa.2008.08.0232008-1: Degree 4 coverings of elliptic curves by genus 2 curves, T. Shaska, S. Wijesiri, S. Wolf, L. Woodland, Albanian J. Math. 2 307--318 (2008)
2007-5: Quantum Codes from Algebraic Curves with Automorphisms, Condensed Matter Physics 2008, Vol. 11, No 2(54), pp. 383–396
2007-4: Some open problems in computational algebraic geometry, T. Shaska; Albanian J. Math. 1 297--319 (2007)
2007-3: Thetanulls of cyclic curves of small genus, E. Previato, T. Shaska, S. Wijesiri; Albanian J. Math. 1 253--270 (2007)
2007-2: Codes over rings of size {$p^2$} and lattices over imaginary quadratic fields, T. Shaska, C. Shor, S. Wijesiri,
Finite Fields Appl. 16 75--87 (2010)  https://doi.org/10.1016/j.ffa.2010.01.0052006-4: Subvarieties of the hyperelliptic moduli determined by group actions,
Serdica Math. J. Â 32Â 355--374Â (2006)2006-3: Codes over F_{p^2} and F_pxF_p, lattices, and theta functions, T. Shaska, C. Shor,Â
Ser. Coding Theory Cryptol., 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007, 70–80. https://doi.org/10.1142/9789812772022%5C_0005Â2006-2: Codes over rings of size four, Hermitian lattices, and corresponding theta functions, T. Shaska, S. Wijesiri,
Proc. Amer. Math. Soc. 136 849--857 (2008)  https://doi.org/10.1090/S0002-9939-07-09152-6  Â2006-1: On the automorphism groups of some AG-codes based on $C_{a,b}$ curves, T. Shaska, Q. Wang,
Serdica J. Comput. Â 1Â 193--206Â (2007)2005-4: A Maple package for hyperelliptic curves, T. Shaska, S. Zheng, 399--408Â (2005)
2005-3: Hyperelliptic curves of genus 3 with prescribed automorphism group, J. Gutierrez, D. Sevilla, T. Shaska,Â
Lecture Notes Ser. Comput., 13, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005, 109–123. https://doi.org/10.1142/9789812701640%5C_0009Â2005-2: Hyperelliptic curves with reduced automorphism group $A_5$, D. Sevilla, T. Shaska,
Appl. Algebra Engrg. Comm. Comput. 18 3--20 (2007)  https://doi.org/10.1007/s00200-006-0030-9Â2005-1: Genus 2 curves that admit a degree 5 map to an elliptic curve, K. Magaard, T. Shaska, H. Volklein,
Forum Math. 21 547--566 (2009)  https://doi.org/10.1515/FORUM.2009.027 Â2004-3: Invariants of binary forms, V. Krishnamoorthy, T. Shaska, H. Volklein,
Dev. Math., 12, Springer, New York, 2005, 101–122.Â2004-2: Genus two curves covering elliptic curves: a computational approach,
Lecture Notes Ser. Comput., 13, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005, 206–231.Â2004-1: Galois groups of prime degree polynomials with nonreal roots, A. Bialostocki, T. Shaska,
Lecture Notes Ser. Comput., 13, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005, 243–255.2003-4: Computational algebra and algebraic curves,
SIGSAM Bull. 37, 117--124Â (2003)Â https://doi.org/10.1145/968708.968713Â Â Â2003-3: Hyperelliptic curves with extra involutions, J. Gutierrez, T. Shaska,Â
LMS J. Comput. Math. 8 102--115 (2005) https://doi.org/10.1112/S1461157000000917 Â2003-2: Some special families of hyperelliptic curves, T. Shaska,
J. Algebra Appl. 3 75--89 (2004) https://doi.org/10.1142/S0219498804000745 Â2003-1: On the generic curve of genus 3, T. Shaska, J. Thompson,
Contemp. Math., Contemporary Math., 369, AMS, Providence, RI, 2005 https://doi.org/10.1090/conm/369/068142002-3: Determining the automorphism group of a hyperelliptic curve, (ISSAC 2003)
Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, 248–254. (ACM), 2003 https://doi.org/10.1145/860854.860904Â2002-2: Computational aspects of hyperelliptic curves, Lecture Notes Ser. Comput., 10, World Scientific Publishing Co., Inc., River Edge, NJ, 2003, 248–257.Â
2002-1: Genus 2 curves with (3,3)-split Jacobian and large automorphism group, (ANTS 2003)
Lecture Notes in Comput. Sci., 2369, Springer-Verlag, Berlin, 2002, 205–218. https://doi.org/10.1007/3-540-45455-1%5C_17 math/02010082001-2: The locus of curves with prescribed automorphism group, K. Magaard, T. Shaska, S. Shpectorov, H. Volklein,
Sürikaisekikenkyüsho K\B{o}kyüroku 112--141 (2002) math/02053142001-1: Genus 2 fields with degree 3 elliptic subfields,
Forum Math. 16Â 263--280Â (2004)Â https://doi.org/10.1515/form.2004.013Â math/01091552001-0: Curves of genus two covering elliptic curves,Â
Thesis (Ph.D.)--University of Florida pg.72 (2001).2000-2: Elliptic subfields and automorphisms of genus 2 function fields, T. Shaska, H. Volklein;
Algebra, arithmetic and geometry with applications (Abhyankar's 70th birthday), West Lafayette, IN, 2000, 703–723, Springer-Verlag, Berlin, (2004) math/0107142Â2000-1: Curves of genus 2 with (n,n)-decomposable Jacobians, Â
J. Symbolic Comput. 31, 603--617, (2001). https://doi.org/10.1006/jsco.2001.0439  math/0312285Â